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Abstract 
In an era where safeguarding personal possessions and sensitive information is of paramount concern, 

conventional biometric identification systems based on physiological and behavioral attributes like faces, irises, 

or fingerprints have encountered various limitations. In recent times, biometric recognition techniques rooted in 

vascular patterns, particularly finger veins, have gained substantial popularity. However, the existing finger vein 

recognition systems face challenges related to intricate image pre-processing and feature vector representation, 

rendering their widespread adoption cumbersome. To solve this issue, the study proposes a novel approach for 

finger vein identification based on Convolutional Neural Networks (CNN). The research makes use of multiple 

CNNs, such as VGG, AlexNet, and an optimized CNN known as CNN-HPSGWO, which is fine-tuned utilizing 

Particle Swarm and Gray Wolf optimization techniques. Three benchmark datasets are collected and processed 

using advanced approaches to improve image quality and guarantee the effectiveness of the suggested approach. 

The accuracy, Equal Error Rate (EER), and matching time of the models are extensively investigated. Notably, 

the CNN-HPSGWO model performs excellent on the SDUMLA dataset, with an accuracy of 95.87%, 96.24% 

on the FV-USM dataset, and 97.07% on the HKPU dataset. These findings highlight the suggested CNN-

HPSGWO model's effectiveness in improving the security and reliability of finger vein authentication systems. 

Key Words: Finger Vein, Convolutional Neural Network, Bio-metric, Accuracy, Matching Time, Image 

Dataset. 

Introduction   
The importance of safeguarding personal belongings and sensitive information has grown significantly. 

Traditional biometric identification systems, which rely on physical and behavioral traits like faces, irises, or 

fingerprints, have their limitations [1, 2]. These traits can be easily falsified or altered over time, as is the case 

with fingerprints. Iris recognition, on the other hand, can be uncomfortable due to the bright lighting used during 

the process [3], and face recognition accuracy is affected by various factors such as poses, occlusions, facial 

expressions, and lighting conditions [4]. 

 

Nowadays, biometric recognition methods based on vascular patterns, particularly finger veins, have gained 

popularity [5-7]. Finger-vein biometric systems capture unique patterns inside the finger, making replication 

virtually impossible. Finger-vein features offer several advantages, including: 

• Unique patterns for each individual, even identical twins, provide excellent distinction. 

• Permanent patterns that don't change over time. 

• Resistance to forgery, observation, damage, or obstruction, unlike fingerprint recognition. 

• Wide acceptance due to small capturing devices and high recognition accuracy. 

• User-friendly, with non-invasive and contactless image capture for convenience and 

cleanliness. 

• Flexibility with ten fingers available for authentication, ensuring continued access in case of 

unexpected issues with one finger. 

 

Despite these advantages, there are still challenges to address for real-world deployment of finger-vein 

biometric systems. Image quality is heavily influenced by the capturing device's characteristics, as the camera is 

very close to the finger, leading to optical blurring. Poor lighting or misalignment of the finger position can also 

hinder recognition. Variations in bone thickness and skin properties, as well as light scattering, introduce noise 
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that requires complex image processing algorithms in conventional finger-vein recognition methods. Recent 

research indicates that Artificial Intelligence (AI) methods can effectively address these challenges, offering a 

promising solution to improve the efficiency of biometric authentication systems based on finger veins. In this 

research, we used DL techniques for reliable and automated authentication systems using finger vein. 

 

Literature Survey 
In finger vein recognition research, there has been a notable shift toward the adoption of DL techniques due to 

their remarkable performance. This section summarises the most recent research on finger vein biometrics, 

offering insight into the present state of the art. In the journal [8], the author introduced an enhanced deep 

network referred to as "Merge CNN." This network leverages the integration of several CNNs interconnected 

with shorter paths. The fundamental concept is to evaluate input images of varying quality using multiple 

identical CNNs and then integrate the outputs into a single layer. To accomplish this, they developed a large 

number of networks and trained them using finger vein images. The merged CNN was constructed using the 

most effective CNN design available, and it combines the original image with an improved version of the image 

generated via the CLAH method. The proposed methodology demonstrated superior performance compared to 

other techniques documented in the existing literature. Research [9] introduced a finger-vein identification 

system that leveraged a pre-trained Deep-CNN model, known as Squeezenet, to extract features from both left 

and right finger vein patterns. To minimize feature dimensions and pick the most essential features, feature-level 

Discriminant Correlation Analysis was applied. In the identification stage, the obtained composite feature 

vectors served as input for a Support Vector Machine classification. The system's performance was evaluated 

using two widely accessible finger vein databases, achieving impressively high mean accuracy rates. In the 

study [10], the focus was on enhancing the recognition performance of finger vein systems by addressing image 

quality issues. The researchers devised a novel method for evaluating finger vein image quality, which involved 

analysing the matching of samples from different fingers to automatically assess and classify image quality. A 

lightweight CNN was created to differentiate between high and low-quality images, recognizing common 

characteristics in low-quality images. The suggested technique has been evaluated on several public datasets 

with respect to existing identification methods, proving the quality evaluation standard. Utilizing the local 

binary pattern technique, the system improved its performance by removing low-quality images. 

 

The research [11] introduced a novel approach to recognizing finger vein-related data. The proposed approach 

based on Long-Short-Term-Memory and DL techniques, focused on the classification of finger vein images. To 

simplify the authentication structure, a Deep Stacked Auto Encoder-based decision-making was employed to 

classify various vein features found in the extensive data. The model encompassed various stages, including 

finger-vein data gathering, pre-processing, Feature Extraction (FE), database matching, and evaluating accuracy. 

Extensive experimental testing showcased the superior performance and advanced quality of the proposed 

method across various metrics. The research [12] suggested a strong multimodal biometric identification 

solution that included finger vein and electrocardiogram (ECG) biometrics. The system was divided into three 

parts: pre-processing, FE, and authentication. Normalization and filtering methods were used for every 

biometric throughout the pre-processing stage. FE was accomplished using a deep CNN model, and the 

authentication process utilized well-known Machine Learning (ML) classifiers. Multi-Canonical Correlation 

Analysis (MCCA) was implemented to reduce the dimensionality of feature representation and speed up 

authentication. The integration of ECG and finger vein systems through feature and score fusion significantly 

enhanced authentication performance, reducing EER by feature and score fusion. Notably, the suggested 

multimodal system, incorporating MCCA feature fusion with a KNN model, achieved greater accuracy 

compared to other ML algorithms. 

 

The study [13] investigated the application of triplet loss function and DL techniques for finger vein 

authentication. To train and validate the model, it was applied to various databases. The study evaluated 

accuracy and other performance metrics for various training-validation set combinations, generating ROC and 

AUC values. The best result achieved excellent accuracy, ROC-AUC values, indicating the model's effective 

identification of finger veins. Importantly, cross-validation between diverse datasets demonstrated the model's 

adaptability and applicability, suggesting that models trained on more challenging datasets exhibited greater 

robustness. The paper [14] introduced the Xception network, a pre-trained CNN structure. This network, which 

is built on depth-wise separable CNNs having residual connections, is well-known for its ability to acquire 

robust features. The work encompassed a three-stage process: data pre-processing to standardize input samples, 

data augmentation to address the shortage of training samples, and FE and categorization done by the pre-

trained Xception network. The network's performance was evaluated using the various datasets. The results 

underscore the excellent performance of the proposed method in comparison to existing approaches. In the 

article [15], a lightweight Siamese architecture with a self-attention system was developed to improve 
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authentication effectiveness for low-quality finger vein images. The researchers used a three-layer CNN to 

obtain finger vein characteristics. It included a global context network for capturing information across various 

layers, a multi-scale feature fusion technique for increasing features, and a self-attention convolution mechanism 

for weighing and vectorizing the fused features. Comprehensive research conducted with various datasets 

showed that the suggested strategy beats state-of-the-art techniques. 

 

Materials and Methods 
The methodology detailed in this section follows a well-structured path, consisting of three essential stages: 

gathering data, processing data, and building a deep learning (DL) model. 

 

Data Collection  

This research employs three benchmark datasets, namely SDUMLA, FV–USM, and HKPU. Each of these 

datasets is comprehensively described, outlining their specific characteristics below. Figure 1 gives the sample 

images from each dataset. 

 

 SDUMLA Dataset: The SDUMLA database [16], developed by Shandong University, is a multimodal 

biometric database. It comprises a finger vein database that contains finger vein images of 6 fingers from 106 

individuals. These fingers encompass the index, middle, and ring fingers on both hands, resulting in a total of 

636 (106 × 6) distinct categories, each with six instances. The images in this database are captured at a 

resolution of 320 × 240 pixels and may exhibit variations, including finger posture tilts and background noise 

introduced by the acquisition device. 

 

FV–USM Dataset: The Finger Vein Universiti Sains Malaysia (FV-USM) database [17] was compiled from a 

sample of 123 individuals, made of 83 men and 40 women, whose ages ranged from 20 to 52 years. The process 

of capturing images took place during two distinct sessions, separated by a period of over two weeks. Within 

each session, four samples were gathered from every individual. Each sample underwent six separate image 

captures. As a result, the database comprises a total of 5,904 images (which arises from 2 sessions, each 

involving 123 subjects, further multiplied by 4 fingers, each with 6 images), each possessing dimensions of 

640*480 pixels. For the purpose of our research, we exclusively focused on one session, which encompassed a 

total of 2,952 images. Within this subset of the FV-USM database, 146 out of 492 subjects were classified as 

having images of high quality, while the remaining subjects had images of low quality. 

 

HKPU Dataset: The Hong Kong Polytechnic University (HKPU) vein database [18] was established through 

the utilization of a non-contact imaging device on the university campus, covering the period from April 2009 to 

March 2010. This comprehensive database encompasses 3,132 images, with each image measuring 513x256 

pixels, all sourced from 156 subjects. Among these subjects, the initial 105 were captured during two separate 

sessions. The time for these sessions ranged from a month to more than six months, having an average gap of 

around 66.8 days. The 105 participants submitted six samples of their middle and index fingers. The other 51 

individuals, received their images recorded in a session. 

 

 
Fig. 1. Sample finger vein images from each dataset 

 

Data Pre-processing 

The effectiveness of finger vein authentication systems frequently hinges on the quality of the captured vein 

images. Consequently, it is essential to pre-process the raw vein images obtained from infrared sensors before 

proceeding with FE. 
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Given that input images from publicly available datasets come in various sizes and orientations, the initial step 

involves Region of Interest (ROI) selection, ensuring that the intended portion of the raw image is uniformly 

represented in terms of dimensions. This step guarantees consistency in all images entering the CNN for FE. 

Subsequently, all images undergo normalization, a process in which they are subsampled to the desired 

dimensions by cropping them to m*n pixels. Following normalization, the cropped images are subjected to 

image enhancement through Contrast Limited Adaptive Histogram Equalization (CLAHE) [19]. This 

enhancement adjusts the image intensities to achieve a more balanced distribution on the histogram. As a result, 

global contrast in the image is enhanced, with frequently occurring intensity values being spread effectively, 

while lower contrast areas are elevated. Further refinement of vein features is achieved through the 

implementation of a Gabor filtering technique. A Gabor filter [20] is a specialized variant of a bandpass filter 

specifically designed for texture segmentation. It has optimal image localization capabilities in both the spatial 

and frequency domains. This filter substantially reduces the effects of noise, allowing for more efficient FE as 

well as better identification accuracy. 

 

For clarity enhancement, the vein images undergo morphological operations [21]. These operations are intended 

to remove extraneous details while preserving critical shape characteristics. Grayscale erosion is initially 

applied, next to grayscale dilation. The dilation and erosion transformations prove to be particularly valuable for 

obtaining a clear representation of the vein patterns. Finally, a binarization technique is utilized to roughly 

identify the vein patterns. This entails applying a threshold of 110, with pixel values exceeding 110 representing 

the vein pattern in white, and the remaining values denoting background by black color. Once this pre-

processing stage is completed, the images are promptly passed to the DL model for further analysis. 

 

Deep Learning 

The architecture of four CNN models such as VGG16, AlexNet, CNN, and CNN-HPSGWO is detailed below. 

VGG-16: The VGG16 CNN model extends the AlexNet architecture through a replacement of big kernel-sized 

filters with a sequence of 3x3 kernel-sized filters [22]. The VGG-16 model comprises four primary components: 

the SoftMax classifier, FCL, convolution module, and attention module [23]. The attention module's role is to 

capture relationships among features in finger vein images. It conducts average pooling and max pooling on the 

input tensor, utilizing the 4th pooling layer (PL) of the VGG-16 model. For a convolution with a 7x7 filter size, 

the max-pooled 2D tensor is fused with every other layer using a sigmoid function. The convolution module 

corresponds to the 4th PL of the VGG-16 network and serves to retrieve features from finger vein images in a 

scale-invariant manner. It acquires the features required for real-time processing of finger vein images from 

midlevel layers. Features from other layers, whether low-level or high-level, are deemed unsuitable for real-time 

finger vein images. Therefore, the attention module is paired with the 4th PL, and the result of this module is 

combined with the 4th PL. The merged features from the convolution and attention blocks are transformed into 

one-dimensional (1D) features through fully connected layer (FCL), consisting of dense, dropout, and flattened 

layers. The dropout rate is 0.5, and the Dense Layer (DL) is restricted to 24 units. The FCL extracts features for 

classification, and the softmax layer is employed for the final recognition of finger vein images. The total 

neurons in the softmax layer correspond to the categories in the classification task, serving as the final DL. The 

softmax layer generates probability scores based on the classification. 

 

AlexNet: In 2012, a team led by Alex Krizhevsky introduced a CNN model, AlexNet, which surpassed LeNet in 

terms of depth and width [24]. This model had a pivotal breakthrough in ML and computer vision by winning 

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012, a contest focused on visual object 

recognition and classification. The architecture of AlexNet included several key components. The initial 

convolutional layer (CL) included Local Response Normalisation (LRN) as well as convolution and max 

pooling processes [25]. This layer is made of 96 different 11x11 receptive filters. Max pooling was carried out 

using 3x3 filters and a stride length of 2. The second layer used 5x5 filters to do similar processes. The three 

subsequent CLs used 3x3 filters. The structure also had two FCLs with dropouts, which were accompanied by a 

SoftMax layer. AlexNet introduced two innovative concepts: Local Response Normalization (LRN) and 

dropout. AlexNet featured three CLs and two FCLs.  

 

CNN: The advantages of CNN, including automated feature selection and complete training, have led to its 

widespread use in image categorization [26]. Different layers within the CNN, including pooling, dropout, DLs, 

and the CL, perform distinct roles. The CNN effectively processes images through the functionalities of its 

layers: the CL automatically selects features, the PL reduces features, and the DL handles classification [27]. 

Each layer in the CNN plays a significant role, with the number of features extracted determined by factors like 

kernel size and the number of kernels. Kernel weights are initialized with random values and adapted during the 

model's training. The output of the CL is passed through the ReLu (Rectified Linear Unit), which utilizes a 
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nonlinear activation function to keep values within a defined range. To combat overfitting, the dropout layer is 

applied after ReLu to assist with regularization. Subsequently, the PL downsamples feature maps, enhancing 

their invariance to minor input variations. The PL executes individual feature maps autonomously, utilizing 

methods like max pooling for obtaining low-level features. Max pooling chooses the highest possible value from 

each region of feature maps. The higher-level layers of the CNN are frequently made up of FCLs, which use the 

PL information to make categorization decisions. The CNN model's last layer employs a SoftMax function to 

provide a probability distribution for multiclass categorization. In the CNN, regularisation is used to prevent 

overfitting. Regularisation reduces overfitting by including a penalty term in the loss function. Dropout can be 

employed for addressing overfitting by restricting the utilization of each neuron. Following the definition of 

CNN's framework, backpropagation is employed to alter the core weights to fit with the objectives of the 

particular challenge.   

 

CNN-HPSGW: The CNN model includes various hyperparameters, such as kernel size, kernel count, kernel 

stride, activation function in the CL, max-pooling kernel size, dropout rate, DL size, learning rate, number of 

convolutions, max-PLs, and more [28]. These hyperparameters significantly influence the CNN model's output. 

To do this we suggest HPSGW optimization for CNN network. The theoretical and mathematical foundation of 

HPSGW is explored in this part, along with its application in the development of an automated CNN using 

the metaheuristic method. The hyperparameter tuning, such as the number of layers and epochs, kernel, 

and batch size, is automated throughout network construction. To get the best possible results, the final CNN 

model is built with the most optimal hyperparameters. 

 

PSO: The author [29] developed the PSO model, which mimics the swarming behaviour of species. The birds 

will spread out and then converge on a food source before finally deciding where to eat. During this quest for 

food, one bird consistently detects the scent of food more clearly than the others. This bird communicates the 

location of the prey effectively, prompting the flock to simultaneously converge on the food source. The PSO 

algorithm harnesses this animal behaviour to address global optimization problems, with each member of the 

swarm known as the particle [30]. This algorithm utilizes the below equations to update the positions. The first 

equation governs the calculation of each particle's next velocity 𝑣𝑖
𝑡+1: 

 

𝑣𝑖
𝑡+1 = 𝑤 ∗ 𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑥𝐵𝑒𝑠𝑡𝑖
𝑡) + 𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) [1] 

 

In this equation, 𝑤 represents the initial inertia, 𝑣𝑖
𝑡+1 is the particle's previous velocity at time 𝑡, and the terms 

𝑟 and 𝑐 are random numbers and acceleration coefficients. The term 𝑥𝐵𝑒𝑠𝑡𝑖
𝑡 and 𝑔𝐵𝑒𝑠𝑡𝑖

𝑡  represents the local and 

global best fitness value. 𝑥𝑖
𝑡  is the particle's previous position at time 𝑡. The subsequent position of the particle, 

𝑥𝑖
𝑡+1, is determined by the second equation: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1    [2] 

 

These equations play a crucial role in the real-time updating of the local and global best values within the swarm 

(as expressed in Eq. 3 and Eq. 4). The best values are evaluated at a given time t, ensuring that the PSO 

algorithm consistently strives for optimization. The local best value (𝑥𝐵𝑒𝑠𝑡𝑖
(𝑡)

) is updated according to the 

following conditions: 

 

𝑥𝐵𝑒𝑠𝑡𝑖
(𝑡+1)

= {
𝑥𝐵𝑒𝑠𝑡𝑖(𝑡)𝑖𝑓𝑓(𝑥𝐵𝑒𝑠𝑡𝑖(𝑡) ≤ 𝑓(𝑥𝑖(𝑡 + 1))

𝑥𝑖(𝑡 + 1)𝑖𝑓𝑓(𝑥𝐵𝑒𝑠𝑡𝑖(𝑡) ≥ 𝑓(𝑥𝑖(𝑡 + 1))
 [3] 

 

Additionally, the global best value (𝑔𝐵𝑒𝑠𝑡) is updated based on the maximum fitness value (𝑓) achieved during 

the previous iterations. The specific selection is guided by the following equation: 

 

𝑔𝐵𝑒𝑠𝑡(𝑡 + 1) = max{𝑓(𝑦), 𝑓(𝑔𝐵𝑒𝑠𝑡(𝑡))}   [4] 

𝑦 ∈ 𝑝𝐵𝑒𝑠𝑡0(𝑡), 𝑝𝐵𝑒𝑠𝑡1(𝑡), … . . , 𝑝𝐵𝑒𝑠𝑡2(𝑡)(𝑡)  [5] 

 

Here, 𝑦 represents various 𝑝𝐵𝑒𝑠𝑡 values (local best values) at different times 𝑡. 

 

GWO: The GWO is a metaheuristic optimization algorithm that was introduced in a study [31]. It is based on 

the social structure and hunting techniques of grey wolves in the wild. Within a GWO, wolves are categorized 

into distinct ranks, including Beta(β), Alpha(α), Delta(δ), and Omega(γ), which simulate a leadership structure 

[32]. Alpha wolves hold the key leadership roles and make decisions for the group, overseeing all group 
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activities, including hunting. Beta wolves play a supportive role under the alpha wolves. Omega wolves follow 

the hierarchical structure and maintain dominance in the group, while the subordinate wolves are referred to as 

Delta. The GWO algorithm classifies solutions into three levels based on their fitness and optimality. Typically, 

the decision made by the alpha wolf is the most favourable for optimization problems. However, when there is 

no centralized leader to guide the group throughout the optimization process, swarm intelligence methods are 

employed. GWO tackles this challenge by allowing individual grey wolves to take on leadership roles, ensuring 

self-organization within the group. GWO, inspired by the behaviour of grey wolves, is especially adept at 

handling tasks like image recognition and classification, making it a valuable tool in swarm intelligence 

applications [33]. The primary processes in the GWO optimization involve the behaviour of each swarm agent, 

as described by mathematical equations (Eqs. 6 and 7): 

 

𝐷⃗⃗ = |𝐶 . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|    [6] 

𝑋 (𝑡 + 1) = |𝑋 𝑝(𝑡) − 𝐴 . 𝐷⃗⃗ |   [7] 

 

′𝐷′ reflects each agent's behavior, ′𝑡′ indicates the present iteration, ′𝑋𝑝′ is the position of the prey, and ′𝑋′ is the 

location of the Grey Wolf. Equations (8) and (9) can be used to determine the values of ′𝐴′ and ′𝐶′: 
 

𝐴 = 2 ∗ 𝑎 ∗ 𝑟1⃗⃗⃗⃗ − 𝑎     [8] 

𝐶 = 2 ∗ 𝑟2⃗⃗⃗⃗      [9] 

 

Over multiple cycles, the variable ′𝑎′ drops gradually from 2 to 0. Random vectors having values between [0, 1] 

are selected, including ′𝑟1′ and ′𝑟2′. Equations 10 to 12 are used to revise the Grey Wolf's position in relation to 

the location of the prey. The method allows the exploration of multiple areas encircling the optimal searching 

agents by altering the values of ′𝐴′ and ′𝐶′. Various distance vectors and positions are employed in the 

mathematical formulas required to determine the Grey Wolf's hunting method: 

 

𝐷⃗⃗ 𝛼=|𝐶1. 𝑋 𝛼 − 𝑋 (𝑡)|    [10] 

𝐷⃗⃗ 𝛽 = |𝐶2. 𝑋 𝛽 − 𝑋 (𝑡)|    [11] 

𝐷⃗⃗ 𝛿=|𝐶3. 𝑋 𝛿 − 𝑋 (𝑡)|    [12] 

𝑋 1 = |𝑋 𝛼 − 𝐴1𝐷⃗⃗ 𝛼|    [13] 

𝑋 2 = |𝑋 𝛽 − 𝐴2𝐷⃗⃗ 𝛽|    [14] 

𝑋 3 = |𝑋 𝛿 − 𝐴3𝐷⃗⃗ 𝛿|    [15] 

 

Here,𝐷⃗⃗ , 𝐷⃗⃗ 𝛽 , 𝐷⃗⃗ 𝛿  represent distance vectors, while 𝑋 , 𝑋 𝛽 , 𝑋 𝛿 denote position vectors for wolves 𝛽 and 𝛿. 

′𝐴1, ′ ′𝐴2, ′ ′𝐴3, ′ ′𝐶1, ′ ′𝐶2, ′ and 'C3' are coefficient vectors. 

 

The Grey Wolf's position is updated as follows: 

 

𝑋 (𝑡+1) =
𝑋⃗ 1+𝑋⃗ 2+𝑋⃗ 3

3
    [16] 

 

Random values between [-2a, 2a] are determined at random, and the selected value is compared to a threshold. 

If |A|< 1, it signifies that the wolf should direct its attacks toward the prey. The algorithm investigates the prey's 

searching and attacking capabilities, and the results guide the movements towards the prey. The population 

members are required to avoid straying from the prey's location. 

 

The HPSGW technique was created while adhering to the core concepts of PSO and GWO techniques. PSO is 

highly effective at addressing real-world problems. However, there is a risk of PSO getting trapped in local 

minima. In our proposed approach, GWO is introduced to support PSO and mitigate the chances of falling into 

local minima. To prevent such issues, PSO with a low success rate, relocate certain particles to random 

positions. To address this, the GWO's exploring capacity is used to direct particles to GWO-influenced regions 

instead of completely random positions. This integration with GWO enhances the efficiency of the algorithm, 

albeit it may extend the running time. The HPSGW Algorithm, as proposed, amalgamates the functionalities of 

PSO and GWO. This is achieved through equations (20) and (21), which integrate the PSO and GWO variants 

to update velocities: 
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𝐷⃗⃗ 𝜶 = |𝐶1. 𝑋 𝛼 − 𝑤 ∗ 𝑋 (𝑡)|    [17] 

𝐷⃗⃗ 𝛽 = |𝐶2. 𝑋 𝛽 − 𝑤 ∗ 𝑋 (𝑡)|    [18] 

𝐷⃗⃗ 𝛿 = |𝐶3. 𝑋 𝛿 − 𝑤 ∗ 𝑋 (𝑡)|    [19] 

 

These equations provide a mechanism to integrate both PSO and GWO, enabling the updating of velocities 

through equation (20): 

 

𝑣𝑖(𝑡 + 1) = 𝑤 ∗ (𝑣𝑖𝑡 + 𝑐1𝑟1(𝑥1 − 𝑥𝑖𝑡) + 𝑐2𝑟2(𝑥2 − 𝑥𝑖𝑡) + 𝑐3𝑟3(𝑥3 − 𝑥𝑖𝑡))     [20] 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖𝑡 + 𝑣𝑖(𝑡 + 1)   [21] 

 

A fitness function is used to identify the optimal values. Using the suggested hybrid optimization approach, the 

fitness function makes use of the Rosenbrock and the objective function. As indicated in equation (22), the 

Rosenbrock function is optimized by adapting an appropriate system of coordinates without depending on 

gradient data or developing localized approximating models. 

 

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]𝑁−1
𝑖=1      [22] 

 

The main objective of this research is to create a CNN that excels in performance by leveraging hybrid 

optimization. 

 

Result And Discussion 
In this study, we designed and developed a Finger Vein Authentication model using CNNs. To assess the 

performance of the model, we utilized various benchmark datasets, including SDUMLA, FV–USM, and HKPU, 

and evaluated key metrics such as Accuracy (%), Equal Error Rate (EER) (%), and Matching Time (s). 

 

SDUMLA Dataset: 

We initiated our analysis using the SDUMLA dataset, and the corresponding results are summarized in Table 1. 

The CNN model achieved an accuracy of 92.54%, with an EER of 4.36% and a matching time of 3.07 seconds. 

The VGG-16 model demonstrated a slightly higher accuracy at 92.99% but with an EER of 3.89% and a 

matching time of 4.32 seconds. AlexNet outperformed both, boasting an accuracy of 94.12%, an EER of 3.52%, 

and a matching time of 4.869 seconds. Notably, the CNN-HPSGW model stood out, attaining an accuracy of 

95.87%, the lowest EER of 1.98%, and a matching time of 5.365 seconds. These results highlight the suitability 

of CNN-HPSGW for the SDUMLA dataset, as it balances high accuracy and relatively low EER. 

 

Table 1. DL model performance on SDUMLA dataset 

Model Accuracy (%) EER (%) Matching 

time (s) 

CNN 92.54 4.36 3.07 

VGG-16 92.99 3.89 4.32 

AlexNet 94.12 3.52 4.869 

CNN-HPSGW 95.87 1.98 5.365 

 

FV–USM Dataset: 

Secondly, we proceeded with the FV–USM dataset, and the outcomes of our model are provided in Table 2. The 

CNN model achieved an accuracy of 91.21%, with an EER of 3.878% and a matching time of 3.56 seconds. 

VGG-16 showed improved accuracy at 93.75% but with an EER of 3.34% and a matching time of 4.65 seconds. 

AlexNet demonstrated excellent results with an accuracy of 94.58%, an EER of 2.24%, and a matching time of 

5.21 seconds. Nevertheless, the CNN-HPSGW model once again shone, with an impressive accuracy of 

96.24%, a remarkably low EER of 1.254%, and a matching time of 5.78 seconds. These results reinforce the 

effectiveness of CNN-HPSGW for the FV–USM dataset, as it excels in both accuracy and EER. 

 

Table 2. DL model performance on FV–USM dataset 

Model Accuracy (%) EER (%) Matching 

time (s) 

CNN 91.21 3.878 3.56 

VGG-16 93.75 3.34 4.65 

AlexNet 94.58 2.24 5.21 

https://einj.net/index.php/INJ/article/view/241


 

716  
 

© International Neurourology Journal 

DOI: 10.5123/inj.2023.4.in77 

 

 

ISSN:2093-4777 | E-ISSN:2093-6931 

                           Vol. 27 Iss. 4 (2023) 

CNN-HPSGW 96.24 1.254 5.78 

 

HKPU Dataset: 

Thirdly, we employed the HKPU dataset, and the results of our model's performance are presented in Table 3. 

The CNN model achieved an accuracy of 92.83%, with an EER of 4.05% and a matching time of 4.52 seconds. 

VGG-16 exhibited higher accuracy at 94.05%, but with an EER of 3.45% and a matching time of 4.98 seconds. 

AlexNet outperformed with an accuracy of 95.83%, a lower EER of 2.02%, and a matching time of 5.68 

seconds. The CNN-HPSGW model once again led the pack, boasting the highest accuracy at 97.07%, the lowest 

EER of 0.84%, and a matching time of 6.12 seconds.  

 

Table 3. DL model performance on HKPU dataset 

Model Accuracy (%) EER (%) Matching 

time (s) 

CNN 92.83 4.05 4.52 

VGG-16 94.05 3.45 4.98 

AlexNet 95.83 2.02 5.68 

CNN-HPSGW 97.07 0.84 6.12 

 

Figure 2 illustrates the accuracy comparison of DL models across various datasets. For all datasets, the 

suggested CNN-HPSGW model consistently delivers the highest accuracy, demonstrating its superior 

performance in finger vein authentication. Figure 3 depicts the EER comparison of DL models across different 

datasets. In every case, the CNN-HPSGW model stands out by yielding the lowest EER, emphasizing its 

reliability in maintaining high authentication accuracy. Finally, Figure 4 provides a time comparison in seconds 

of DL models on various datasets. While the CNN model excels in minimizing matching time, the 

recommended CNN-HPSGW model consistently exhibits longer matching times.  

 

 

 
Fig. 2. Accuracy comparison of DL model on various dataset 
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Fig. 3. EER comparison of DL model on various dataset 

 

 
Fig. 4. Matching time comparison of DL model on various dataset 

 

Conclusion 
Introducing a novel approach, an optimized CNN (CNN-HPSGW) to significantly enhance the efficiency of 

existing finger-vein recognition. This model is carefully built by combining three essential parts: finger-vein 

pre-processing, a deep learning classifier, and comprehensive evaluation. Empirical findings derived from our 

experiments unequivocally establish the supremacy of the CNN-HPSGW model outlined in this paper. Across 

all three datasets, this model consistently outperformed the traditional CNN models by delivering the highest 

levels of accuracy and the most minimal EER. Although there was a marginal increase in the matching time, this 

was a deliberate trade-off, one that yielded exceptional accuracy and minimized error rates. These findings 

underscore the applicability and suitability of the CNN-HPSGW model in the realm of finger vein recognition 
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applications, where accuracy and security are very important. In our future research, we are preparing to extend 

and diversify our recognition system by integrating various biometric parameters alongside finger vein data. 

This expansion will involve incorporating additional biometric features or characteristics, such as facial 

recognition, iris scans, or fingerprint data, to create a more comprehensive and robust biometric identification 

system. The goal is to improve the overall accuracy, security, and reliability of our recognition system by 

harnessing the power of multiple biometric data sources, making it more versatile and effective in various 

applications. 
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