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Abstract 
Magnetic resonance imaging is the clinically acclaimed imaging modalities which is utilized for the screening of 

brain abnormalities. It provides the visual interpretation of the abnormalities in terms of tumors, masses, grey 

matter and clots. However, these readable features of brain are affected due to the presence of inherent Rician 

noise. Moreover, it also restricts the decision capability of the expert about the brain abnormalities. So, for the 

restoration and enhancement the brain MR images, an improved denoising auto encoder high boost filter i.e., 

IDAEHBF is proposed. In order to develop the proposed IDAEHBF, the smoothening filter of high boost is 

swapped with the improved denoising auto encoder i.e., IDAE. Furthermore, the symmetry skip connection has 

been used in the conventional denoising auto encoder to form the IDAE. This modification provides a better 

correlation amid the noisy pixel and encoder-decoder part. The efficacy of the proposed method has been 

assessed with respect to the qualitative and quantitative assessment for the brain web dataset. The human visual 

system, full and no reference image metrics are used to quantitatively measure the performance of the proposed 

method. Apart from this, a comparative study has been also presented between the proposed and existing 

method to describe the effectiveness of the proposed method. The obtained results demonstrate that the proposed 

method is capable of simultaneously reducing Rician noise, preserving edges, restoring fine details, and 

enhancing anomalies. 

Key Words: Brain, Magnetic Resonance Imaging, Denoising Auto-Encoder, Enhancement, High Boost, 

Restoration. 

Introduction   
The brain screening provides the structural overview as well as changes in the brain functionality [1]. It 

describes the brain disorder and conditions in terms of abnormalities such as grey matter particles, tumors, clots 

and masses. Epilepsy, schizophrenia, autism, Parkinson's, stroke, and dementias are the most common types of 

neurological illnesses affecting the brain [2]. These disorders are raised due the alteration in the shape of brain 

cells.  The incidence and mortality rate by of brain disorder are increasing day to day. It can be only prevented 

by the early diagnosis of the disorder.  

 

Magnetic resonance imaging (MRI) is the widely used imaging tool for the diagnosis of brain disorders[3]. It is 

popular due to its non-invasive property and less radiative nature. It concurrently uses a magnetic field and radio 

waves simulated via computer to obtain the raw images of brain cells. The produced raw images are complex-

valued in nature and for the better visualization it is transformed into the magnitude valued image with the aid of 

mathematical operations [4]. However, the acquired images have low signal-to-noise-ratio that confirms the 

existence of noise in the image. The origin of noise varies from one source to other. The prominent sources of 

noise include machine’s calibration, sensors, coils, environment illumination, acquisition, transmission, and 

storage medium [5]. Literature shows that the MR magnitudes image generally comply to the Rician noise [6,7]. 

It is an undesired inherent characteristic of the image which is multiplicative in nature. It affects both the 

image's readability features and clarity of the image. It confines the exact interpretation of the diseases by the 

experts. Moreover, it reduces the high frequency as well as the fine detail information of the image such as 

edges and boundary. Thus, the brain image restoration and enhancement are the two major concern that should 

be addressed properly for the early diagnosis of brain disorder.  

 

To achieve the restoration and enhancement of brain MR images in a single framework, an improved denoising 

auto encoder deep learning based high boost filter (IDAEHBF) has been proposed. It combines the attributes of 

denoising auto-encoder (DAE) [8] and high boost filter (HBF) [9] for the image denoising and quality 

improvement respectively. The development of the proposed IDAEHBF begins with the swapping of 

smoothening filter of high boost with the improved denoising auto encoder (IDEA). It is the first advancement 

and it offers a better denoised-smoothen image of the noisy image. Furthermore, in the second advancement the 
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efficacy of conventional denoising auto encoder (CDAE) has been refined with the help of the symmetry skip 

connection [10] in order to form the IDAE. It provides a better correlation between the noisy pixel data with the 

layers of auto encoder-decoder model. 

 

The rest of the paper has been systematized as follows: section 2 reports the literature of existing denoising 

methods in contrast to MRI images. Section 3 illustrates about the used dataset and the proposed methodology. 

Section 4 presents the information of the performance assessment metrics in terms of human visual system, full 

and no reference image metric. Section 5 describes the performance of the proposed IDAEHBF. And, section 6 

presents an overall conclusion.   

 

Literature Survey 
There has been various method developed to alleviate the negative impact of the Rician noise. It skews the exact 

position of brain lesions and makes medical diagnosis less precise. The denoising approaches for Rician noise 

have been widely classified as spatial, transform, similarity, and partial differential equation (PDE) based filters 

[11]. The mostly used spatial domain-based filter are median and wiener filter respectively. Gabor filter [6] and 

wavelet method lies under the transform domain denoising filter. The similarity based denoising filters 

comprises non-local means [12] and its modified form [13]. Furthermore, PDE-based techniques for MRI image 

denoising include total variation [14], anisotropic diffusion [15], complex diffusion [16,17], and fourth order 

partial differential equation [18]. Apart from this, some of the methods follows the image enhancement after the 

image denoising.  

 

Lee et al. [19] had used the properties of median and wiener filter for the denoising of T1 weighted brain MR 

images of the brain web dataset. The performance was illustrated with correspond to qualitative and quantitative 

assessment such as edge preservation index and coefficient of variation. Redhya et al. [20] had utilized adaptive 

median filter to minimize the noise from brain MR images. The work was primarily developed for the 

classification of Parkinson diseases. The image quality assessment parameters like mean square error (MSE), 

image enhancement factor and peak-signal-to-noise-ratio (PSNR) were estimated to judge the effectiveness of 

the method. Singh et al. [21] had compared the performance of median, gaussian and wiener filter for the 

denoising of brain MR images. The efficacy was judged with respect to MSE and PSNR image metric. Ali et al 

[22] had employed mixing concatenation residual network (MCR) for the gaussian and salt-pepper noise 

elimination from brain MR images. In this method six consecutive convolutional layers with the rectified linear 

unit (ReLU) were used for the denoising of image. The metrics such as structural similarity index map (SSIM), 

PSNR and SSIM was determined as image quality assessment parameters. Kumar et al. [12] had clubs the PDE 

based anisotropic diffusion and unsharp masking for the noise removal of brain MR images. The method 

effectiveness was judged for MSE, PSNR, SSIM, correlation parameter (CP), and blind reference image spatial 

quality evaluator respectively. Yadav et al. [18] had used the other PDE rooted method i.e., complex diffusion 

for the elimination of Rician noise from MR images. In this method the image was treated as a complex-valued 

object, where the real and imaginary parts correspond to the intensity and gradient of the image respectively. 

The method efficacy was estimated for brain-web dataset and the metrics such MSE, PSNR, CP and SSIM were 

used for assessment purpose. Zhang et al. [14] had employed total-variation for the restoration of brain MR 

images. The method combines Fischer Burmeister function to regularize the total variation. The method 

effectiveness was evaluated in terms of MSE, PSNR and SSIM. Thakur et al. [23] had compared the working 

capability of denoising filters such as NLM, block matching three-dimensional filter, weighted nuclear norm 

minimization and fast Fourier transform. All of these approaches were tested on MR images and assessment 

metrics like PSNR and SSIM were analyzed. Kollem et al. [24] had used FPDE and quaternion wavelet 

transform for the noise removal from the MR images. The method uses a diffusivity function to advance the 

characteristic of PDE. PSNR, SSIM and MSE were evaluated to measure the performance of the method. Dinh 

[25] had combined the attributes of contrast limited adaptive histogram equalization, denoise convolutional 

neural network, Laplacian edge detector and marine predators’ algorithm respectively for the removal of noise 

and enhancement of medical image. The method effectiveness was determined in terms of entropy, average 

gradient, and mean light intensity. Kumar et al. [6] had applied a reshaped Gabor filter for the denoising of MR 

images. The qualitative as well as quantitative assessment was performed to measure the efficacy of method. 

 

The method such as ADF [15], and MCD [16] have an issue of over smoothening which obscures fine details. 

The method based on ADMF [20], WF [21], MCR [22], and Gabor [6] produces a low contrast image and fails 

to eliminate the noise. Furthermore, the methods like FPDE[18], NLM [23] and TV [14] have limited 

performance in contrast to edge or high frequency information preservation. Thus, the main drawbacks of the 

current approaches can be understood from the reported literature in terms of excessive smoothing, edge 

blurring, loss of high frequency information and the formation of low contrast images. Therefore, an improved 
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denoising auto encoder deep learning based high boost filter (IDAEHBF) has been presented to address these 

key problems. The major contributions of the proposed IDAEHBF are as follows: 

1) It proposes a method that clubs the features of high boost filter (HBF) and denoising auto-encoder 

(DAE) in a single framework for the restoration and enhancement of Rician corrupted brain MR image. 

2) It presents an improved denoising auto-encoder (IDAE) at the place of the smoothen low pass function 

in high boost to readdress the restrictions of HBF. 

3) To refine the efficacy of conventional DAE (CDAE) a modification has been employed. To add 

encoder and decoder layers, symmetry skip connections are fabricated. This modification offers a better 

learning and visualization of noisy pixels. 

4) The proposed IDAEHBF has been validated on T1, T2 and PD weighted MRI images of brain web 

dataset. 

 

Research Methodology 
The restoration and enhancement of Rician impacted brain MR images, an improved denoising auto encoder 

deep learning based high boost (IDAEHBF) has been proposed. The collection of MR brain images is the first 

steps in the development of the proposed method. The IDAEHBF utilizes the features of conventional denoising 

auto encoder (CDAE) and high boost filter (HBF). The function of CDAE is to eliminate the noise from the 

images while a HBF is utilized for image enhancement. To increase the robustness of the HBF, the IDAE is 

substituted at the place of low-pass module in HBF. This modification provides a better denoised image in 

compare to the conventional low-pass approach. However, the CDAE have some limitations in terms of gradient 

flow, multi-scale feature learning and mitigating information loss. So, to refine the performance of CDAE a 

symmetry skip connection is added amid the layers of encoder and decoder part. Figure 1 shows the block 

diagram of the proposed IDAEHBF. 

 
Figure 1: Flowchart of the proposed improved denoising auto encoder deep learning high boost filter 
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Dataset Collection 

To develop the proposed method IDAEHBF, brain web [26] dataset has been collected. It is an openly accessible 

database that is used as a benchmark data for the research work. The complete description of the database is 

given in Table 1. 

 

Table 1: Information of the Brain Web Database 

Key Description 

Imaging modalities T1, T2, and PD  

Types of noise variance 0%, 3%, 5%, 7% and 9% 

Total Number of images 905 for each imaging modality 

Image storage format Portable Network Graphics (PNG) 

Accessibility Publicly 

Size of image 181×127 Pixel 

 

Proposed Improved Denoising Auto Encoder Deep Learning High Boost Filter 

MRI screening provides information in the form of raw image data, which is primarily a complex valued data. 

These raw image data are converted into magnitude MR valued images for simple interpretation. However, the 

images are get affected by noise during the image acquiring, transmitting and storing respectively. It restricts the 

effectiveness of qualitative and quantitative measurements derived from MR images. The MRI image's general 

form [27] can be represented as: 

 

𝑔 = 𝑚 ∗ ℎ + 𝑎                                                                                                   (1𝑎) 

𝑔 = 𝑅𝑖𝑐𝑖𝑎𝑛 ∗ ℎ + 𝑎                                                                                          (1𝑏) 

 

where ℎ is the MRI image affected by Rician noise, 𝑎 is the additive noise, and 𝑔 is the magnitude MRI image. 

For the development of the method, additive noise is neglected. Let the digitized form of magnitude MR image 

is expressed by 𝐼 then its the probability distribution correspond to Rician noise [16] may read as: 

 

𝑃(𝑀, 𝜎) =
𝑀

𝜎2 𝑒𝑥𝑝 𝑒𝑥𝑝 [
𝐼2+𝑀2

2𝜎2 ]  𝐽𝑜 (
𝐼𝑀

𝜎2) 𝐻(𝑀)                           (2)       

 

where, 𝐼 represent the amplitude of the noiseless image, 𝜎2 is the variance, 𝐽𝑜(. ) is a first-order modified Bessel 

function with zero order, 𝐻(. ) is the unit step Heaviside function, and 𝑀 is the magnitude of image. In order to 

restore the image information, improved denoising auto encoder has been employed. The IDAE is a modified 

form of conventional denoising auto encoder (CDAE) [8]. The CDAE uses a stochastic approach to reconstruct 

the noisy image. It comprises encoder, latent space and decoder. The encoder takes the input noisy image and 

maps it to a lower-dimensional representation. Moreover, this lower-dimensional representation is usually 

referred to as the latent space. The latent space captures the underlying structure of the image while filtering out 

the noise. Later, the decoder takes the code produced by the latent space and attempts to reconstruct the 

denoised image using lower dimensional representation of the noisy image.  

 

Let's 𝐼 is noisy input image and the encoder function as 𝐸. The encoder maps the noisy input image 𝐼 to a lower-

dimensional representation 𝑍  with the aid of the latent space. The overall process may read as: 

 

𝑍 = 𝐸(𝐼)                                                                                                                             (3) 

 

Equation 3, shows the conversion of noisy image into its lower dimensional form. Further, these lower 

dimensional data is processed by decoder 𝐷 in order to achieve the reconstructed denoised image. The above 

statement mathematically governed as: 

 

𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑡𝑒𝑑/𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = 𝐷(𝐼)                                                                                              (4) 

 

The loss function quantifies the discrepancy between the reconstructed data 𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑡𝑒𝑑/𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑  and the noise 

free reference image 𝑢. MSE loss is a commonly used choice for DAEs: 

 

𝑀𝑆𝐸𝐿𝑜𝑠𝑠 =
1

𝑀𝑁
∑

𝑀−1

𝑖=0

∑

𝑁−1

𝑗=0

[𝑢 − 𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑡𝑒𝑑/𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑]2                                                        (5) 
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However, the performance of CDAE is limited with respect to the gradient flow and loss function. The refine the 

efficacy of CDAE, the symmetry skip connection has been incorporated between the layers of encoder and 

decoder. Figure 2 shows the architecture of proposed IDAE with symmetry skip connection [10]. It allows 

information from one layer to be directly fed into a later layer of the network, bypassing some intermediate 

layers. By adding skip connections, the model can have access to both the high-level feature representations 

learned in the encoder and the low-level details present in the input image. It enhances the model's ability to 

reconstruct the original denoised image more accurately.  

 

Figure 2: Proposed Improved Denoising Auto-Encoder 

 

The image obtained by IDAE is a low contrast image. So, to boost the image quality IDEA is used as a low pass 

operator (LPO) in HBF [9]. This idea is incorporated due the limitation of LPO of conventional HBF such as 

image denoising, edge restoration and fine details preservation respectively. Moreover, this modification also 

offers an absolute image quality improvement. Thus, all the three process i.e., denoising, restoration and 

enhancement of the image occurs in a single framework. To ease the implementation let’s 𝐼𝐼𝐷𝐴𝐸  =
𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑡𝑒𝑑/𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 ; where 𝐼𝐼𝐷𝐴𝐸  is resultant image. The process of creation of IDAEHBF initiates with 

substituting the IDAE at the place of LPO of conventional HBF. It may define as: 

 

𝐼𝐿𝑃𝑂 = 𝐼𝐼𝐷𝐴𝐸                                                         (6) 

 

where, 𝐼𝐿𝑃𝑂 is the low pass image of HBF; 𝐼𝐼𝐷𝐴𝐸  is the reconstructed denoised image obtained by proposed 

IDAE as mentioned in equation 4. To produce the high pass image via HBF process, the resulting image of 𝐼𝐼𝐷𝐴𝐸  

has been subtracted from the input image 𝐼. It is mathematically expressed as: 

 

𝐼𝐻𝑃𝐼𝐷𝐴𝐸 = 𝐼 − 𝐼𝐼𝐷𝐴𝐸                                                (7) 

 

where, 𝐼𝐻𝑃𝐼𝐷𝐴𝐸 is high pass form of input image 𝐼. The high pass form of an image shows the details of image's 

edges and boundaries. Furthermore, to estimate the high boost form of the image, the scaled version of the input 

image is added with the resultant image of 𝐼𝐻𝑃𝐼𝐷𝐴𝐸 . It is expressed as: 

 

𝐼𝐼𝐷𝐴𝐸𝐻𝐵𝐹 = (𝐴 − 1). 𝐼 + 𝐼𝐻𝑃𝐼𝐷𝐴𝐸                            (8) 

 

where, 𝐼𝐼𝐷𝐴𝐸𝐻𝐵𝐹  is the high boost image of the input image 𝐼. It also illustrates the resorted, denoised and 

enhanced form of the input image, so for simplicity it may denoted as: 𝐼𝐼𝐷𝐴𝐸𝐻𝐵𝐹 = 𝐼𝑅𝐷𝐸 . Furthermore, 𝐴 is the 

amplification factor [28]. It controls the amount of boosting and it should be a positive number where  (𝐴 >)]. 
Table 2 shows the pseudo code of the proposed improved denoising auto encoder high boost filter. 
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Table 2: Pseudo code of proposed IDAEHBF 

Input: {𝑢(𝑖, 𝑗),  𝐼(𝑖, 𝑗)}, where  𝐼(𝑖, 𝑗) and  𝑢(𝑖, 𝑗) are noisy and reference image respectively 

Start Computation: 

Step 1: Give the input image   𝐼(𝑖, 𝑗) to start the computation process.  

Step 2: Compute the reconstructed denoised image via improved denoising auto encoder (IDEA) i.e., 

equation (4)  

𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑡𝑒𝑑/𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = 𝐷(𝐼) 

Step 3: Substitute the IDEA as a low pass operator in high boost filter (HBF) and compute the high pass 

image using equation (6) and (7) respectively 

𝐼𝐿𝑃𝑂 = 𝐼𝐼𝐷𝐴𝐸  

and, 𝐼𝐻𝑃𝐼𝐷𝐴𝐸 = 𝐼 − 𝐼𝐼𝐷𝐴𝐸  

Step 4: Compute the high boost image using equation (8) as: 

𝐼𝐼𝐷𝐴𝐸𝐻𝐵𝐹 = (𝐴 − 1). 𝐼 + 𝐼𝐻𝑃𝐼𝐷𝐴𝐸  

Step 5. Evaluate performance metrics. 

Step 6. Store the result 

End Computation 

Output: {𝐼𝐼𝐷𝐴𝐸𝐻𝐵𝐹(𝑖, 𝑗)}, where 𝐼𝐼𝐷𝐴𝐸𝐻𝐵𝐹(𝑖, 𝑗) is improved denoising auto encoder high boost image   

 

Performance Evaluation Metrics 
The proposed IDAEHBF's efficacy has been measured using multiple performance evaluation metrics. The 

metrics are divided with respect to human visual system [29], full and no reference [30] image quality 

assessment measures. Table 5 depicts the mathematical formulation of the measures used. 

 

Table 5: Performance Evaluation Metrics 

 Metrics  Mathematical Notation 

Full reference 

Assessment 

Parameters 

(FRAP) [30] 

Mean-Squared 

Error (MSE) 𝑀𝑆𝐸 =
1

𝑀𝑁
∑

𝑀−1

𝑖=0

∑

𝑁−1

𝑗=0

[𝑢(𝑖, 𝑗) − 𝐼𝑅𝐷𝐸(𝑖, 𝑗)]2 

Peak Signal-to-

Noise Ratio (PSNR) 𝑃𝑆𝑁𝑅 = 10
(𝐿 − 1)

𝑀𝑆𝐸
𝑑𝑏  

Correlation 

Parameter (CP) 𝐶𝑃 =
∑ (𝑢(𝑖, 𝑗) − 𝜇𝑢) ∑ (𝐼𝑅𝐷𝐸(𝑖, 𝑗) − 𝜇𝐼𝑅𝐷𝐸

)

√∑ (𝑢(𝑖, 𝑗) − 𝜇𝑢)2 ∑ (𝐼𝑅𝐷𝐸(𝑖, 𝑗) − 𝜇𝐼𝑅𝐷𝐸
)2

 

Normalized 

Absolute Error 

(NAE) 

𝑁𝐴𝐸 =
∑𝑀−1

𝑖=0 ∑𝑁−1
𝑗=0 |𝑢(𝑖, 𝑗) − 𝐼𝑅𝐷𝐸(𝑖, 𝑗)|

∑𝑀−1
𝑖=0 ∑𝑁−1

𝑗=0 𝑢(𝑖, 𝑗)
 

Human visual 

system 

Assessment 

Parameters 

(HVSAP) [29] 

 

 

Universal Quality 

Index (UQI) 

𝑈𝑄𝐼 =
4𝜇𝑢𝜇𝐼𝑅𝐷𝐸

𝜎𝑢𝐼𝑅𝐷𝐸

(𝜇𝑢
2 + 𝜇𝐼𝑅𝐷𝐸

2)(𝜎𝑢
2 + 𝜎𝐼𝑅𝐷𝐸

2)
 

          here, 

𝜎𝑢𝐼𝑅𝐷𝐸
=

1

𝑀𝑁 − 1
∑

𝑀−1

𝑖=0

∑

𝑁−1

𝑗=0

(𝑢(𝑖, 𝑗) − 𝜇𝑢)(𝐼𝑅𝐷𝐸(𝑖, 𝑗) − 𝜇𝐼𝑅𝐷𝐸
) 

Structural 

Similarity Index 

(SSIM) 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑢𝜇𝐼𝑅𝐷𝐸

+ 𝐶1)(2𝜎𝑢𝐼𝑅𝐷𝐸
+ 𝐶2)

(𝜇𝑢
2 + 𝜇𝐼𝑅𝐷𝐸

2 + 𝐶1)(𝜎𝑢
2 + 𝜎𝐼𝑅𝐷𝐸

2 + 𝐶2)
 

No reference 

Assessment 

Parameters 

(NRAP) [30] 

 

Perceptual 

Sharpness Index 

(PSI) 

𝐼𝑃𝑆𝐼(𝑖, 𝑗) = {
𝐼𝑢𝑝(𝑖, 𝑗) − 𝐼𝑑𝑜𝑤𝑛(𝑖, 𝑗)

𝑐𝑜𝑠 𝑐𝑜𝑠 (∆∅(𝑖, 𝑗)) 

−
𝐼𝑚𝑎𝑥(𝑖, 𝑗) − 𝐼𝑚𝑖𝑛(𝑖, 𝑗)

𝐼(𝑖, 𝑗)
;   𝑖𝑓 

𝐼𝑢𝑝(𝑖, 𝑗) − 𝐼𝑑𝑜𝑤𝑛(𝑖, 𝑗)

𝑐𝑜𝑠 𝑐𝑜𝑠 (∆∅(𝑖, 𝑗)) 

≥ 𝐼𝑗𝑛𝑏  
𝐼𝑢𝑝(𝑖, 𝑗) − 𝐼𝑑𝑜𝑤𝑛(𝑖, 𝑗)

𝑐𝑜𝑠 𝑐𝑜𝑠 (∆∅(𝑖, 𝑗)) 
; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

Where 𝑢 and 𝐼𝑅𝐷𝐸  are the reference image and resultant image of IDEAHBF respectively. 𝜎2 and 𝜇 are the 

variance and mean of the corresponding image. 
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Results and Discussion 
The performance of the proposed IDSEHBF has been evaluated in terms of qualitative and quantitative 

assessments. The investigation has been evaluated for T1, T2 and PD weighted brain images of the Brain Web 

MRI database [26]. Apart from this, a comparative performance study with respect to qualitative and 

quantitative analysis has been also presented between the proposed and existing methods. For the performance 

purpose the value of A in HBF has been taken 5.  

 

Qualitative assessment:  

The improvement in image quality is measured with the aid of qualitative analysis. To perform the analysis T1, 

T2 and PD MRI images has been used with respect to the 9% noise variance. However, the process of 

evaluation stands same for the other noise variances such as 3%, 5%, and 7% of T1, T2 and PD brain MR 

images.  

 

Figure 3 exhibits the result of all steps involved during the implementation of proposed IDAEHBF for T1 MRI 

brain images. It comprises of total three images where (a) correspond to sample image; (b) is the noisy form of 

the sample image; and (c) is the restored, denoised and enhanced image obtained by the proposed method. 

Furthermore, Figures 4 demonstrates the qualitative result for T2 weighted MR image with 9% noise variance. 

The very first image i.e., (a) refers to sample input image; the second image i.e., (b) is the noisy image; and the 

last image i.e., (c) is the restored, denoised and enhanced image attained by the proposed IDAEHBF. In similar 

way, figure 5 exhibits the qualitative result for PD weighted MR image with 9% noise variance. The image (a) 

refers to sample input image; the image (b) is the noisy image; and the last image (c) is the restored, denoised 

and enhanced image attained by the proposed method. Figure 6 shows the illustrative comparative qualitative 

assessment. The comparison is evaluated with 9% noise variance of T1 MRI brain image.  In these figures, 

image (a) to (i) are the resultant images of FPDE[18], NLM [23], WF [21], MCD [16], TV [14], ADMF [20], 

MCR [22], ADF [15], Gabor [6] and Proposed IDAEHBF respectively. 

 

 
(a)  

 
(b) 

 
(c) 

Figure 3: Result of proposed method for T1 weighted MR image (a) Noiseless image (b) Noisy Image (c) 

Output image IDEAHBF 

 

 
(a) 

 
(b) 

 
(c) 
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Figure 4: Result of proposed method for T2 weighted MR image (a) Noiseless image (b) Noisy Image (c) 

Output image by IDEAHBF 

 

Figure 5: Result of proposed method for PD weighted MR image (a) Noiseless image (b) Noisy Image (c) 

Output image by IDEAHBF 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 6: The output pictures acquired by the proposed method and other ways that already exist for T1 

weighted MR image where (a) FPDE[18], (b) NLM [23], (c) WF [21], (d) MCD [16], (e) TV [14], (f) ADMF 

[20], (g) MCR [22], (h) ADF [15], (i) Gabor [6] and (j) Proposed IDAEHBF 

 

Quantitative assessment: 

The performance of the proposed IDAEHBF has been assessed with the aid of quantitative analysis. It judges 

and compares the proposed method’s efficacy with other existing methods in terms of numeric value. The values 

are obtained by implementing the performance assessment parameters as mentioned in section 4. The 

quantifiable analysis has been calculated for the entire images of dataset. The comparative quantitative includes 

the results of  FPDE[18], NLM [23], WF [21],  MCD [16], TV [14], ADMF [20], MCR [22], ADF [15] and 

Gabor [6] filters which is reported in literature.  

 

Table 3, 4 and 5 demonstrate the comparative numerical evaluation between the proposed and other existing 

methods for T1, T2 and PD brain respectively. It includes the performance assessments parameters of FRAP, 

HVSAP, and NRAP respectively. From the Table 3, the values of metrics such as MSE, PSNR, CP, NAE, UQI 

and SSIM and PSI have the following numeric scores of the proposed method 0.0227, 63.4917, 0.9465, 0.7429, 

0.4423, 0.7242 and 0.6752 respectively. Tables 4 shows the comparative quantitative result for the entire images 

of 9% noise variance of T2 dataset with the following values MSE, PSNR, CP, NAE, UQI, SSIM and PSI 

respectively 0.0337, 67.8120, 0.9439, 0.9332, 0.6418, 0.0.4923 and 0.6782 respectively. Table 5 shows the 

quantitative result of PD MRI images. The numeric values of MSE, PSNR, CP, NAE, UQI, SSIM and PSI are 

0.0551, 65.2952, 0.9432, 0.8991, 0.8592, 0.5395 and 0.8954 respectively. The comparative graphic line plot of 

Table 3, 4 and 5 is illustrated by Figure 7, 8 and 9 respectively.  

 

 
(a) 

 
(b) 

 
(c) 
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Table 3: Comparative quantitative evaluation amid the reported methods and proposed IDAEHBF for T1 

Brain MR image with 9% noise variance 

 
 

Table 4: Comparative quantitative evaluation amid the reported methods and proposed IDAEHBF for T2 

Brain MR image with 9% noise variance 

 

 
Table 5: Comparative quantitative evaluation amid the reported methods and proposed IDAEHBF for PD 

Brain MR image with 9% noise variance 
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(a) 

 
(b) 

Figure 7: Line plot comparing the variables in Table 3 with respect to T1 images (a) shows the values 

MSE, CP, NAE, UQI, SSIM and PSI respectively; (b) illustrates PSNR 

 

 

 

The proposed method uses four encoding and decoding layers respectively. The encoding layers reduce all the 

data and to a single neuron and then the decoding layers use up sampling to increase the data in the model. This 

process removes the noise in the images and ensures that only the important data remains. The proposed 

IDAEHBF has been trained for 100 epochs. Figure 10 shows a graphical plot of PSNR vs number of epoch. The 

graph shows the variation PSNR values while increasing the epoch during training of the model. 

 
(a) 

 
(b) 

Figure 8: Line plot comparing the variables in Table 4 with respect to T2 images (a) shows the values 

MSE, CP, NAE, UQI, SSIM and PSI respectively; (b) illustrates PSNR 

 
(a) 

 
(b) 

Figure 9: Line plot comparing the variables in Table 5 with respect to TD images (a) shows the values 

MSE, CP, NAE, UQI, SSIM and PSI respectively; (b) illustrates PSNR; 
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Figure 10: Plot of number of epochs vs PSNR 

 

Conclusion 
The primarily objective of the present work was to restore, denoise and enhance the brain MRI images which is 

usually affected by Rician noise. The objective was accomplished with the aid of the proposed improved 

denoising auto encoder deep learning based high boost filter (IDAEHBF). The IDAEHBF combines the 

attributes of conventional denoising auto encoder (CDAE) and high boost filter (HBF). The following 

modification had been implemented in order to the develop the IDAEHBF. It was begun with the 

implementation of IDEA where the CDAE was clubbed with the symmetric skip connection between the layers 

of encoder and decoder. It helps to reduce the issues of gradient flow, multi-scale feature learning and mitigating 

information loss. Furthermore, the IDEA was clubbed with HBF where the IDEA provides a better reconstructed 

denoised image as an alternative of conventional approach. Thus, both the modifications deliver a single 

framework for restoration, denoising and enhancement of brain MRI images instead of performing separately. 

The performance of the proposed IDAEHBF was measured on the 9% noise variance of T1, T2 and PD brain 

image respectively. The dataset was collected from the Brain web MRI database. The performance was 

demonstrated in terms of qualitative as well as quantitative study. The qualitative study was used to exemplify 

the improvement in image quality which was obtained by the proposed IDAEHBF. Furthermore, the quantitative 

study was articulated with respect to the metrics of FRAP, HVSAP, and NRAP to measure the efficiency of the 

proposed IDAEHBF. The metrics like MSE, PSNR, CP, and NAE were employed as FRAP. UQI and SSIM 

were utilized as the parameters of HVSAP. The NRAP assessments parameters was cast-off in terms of PSI. 

Moreover, the performance of the proposed IDAEHBF was also presented in the form of comparative study. The 

existing methods like FPDE[18], NLM [23], WF [21],  MCD [16], TV [14], ADMF [20], MCR [22], ADF [15] 

and Gabor [6]  were used for the comparative study. Based on both qualitative and quantitative studies, it has 

been found that the suggested IDAEHBF is the best way to restore, denoise, and improve MRI images with 

Rician noise while keeping their edges and boundaries. The IDAEHBF's results can be used to find the area of 

interest for image segmentation as well as to improve the accuracy of the feature extraction and classification 

processes. 
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