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Abstract

Magnetic resonance imaging is the clinically acclaimed imaging modalities which is utilized for the screening of
brain abnormalities. It provides the visual interpretation of the abnormalities in terms of tumors, masses, grey
matter and clots. However, these readable features of brain are affected due to the presence of inherent Rician
noise. Moreover, it also restricts the decision capability of the expert about the brain abnormalities. So, for the
restoration and enhancement the brain MR images, an improved denoising auto encoder high boost filter i.e.,
IDAEHBEF is proposed. In order to develop the proposed IDAEHBF, the smoothening filter of high boost is
swapped with the improved denoising auto encoder i.e., IDAE. Furthermore, the symmetry skip connection has
been used in the conventional denoising auto encoder to form the IDAE. This modification provides a better
correlation amid the noisy pixel and encoder-decoder part. The efficacy of the proposed method has been
assessed with respect to the qualitative and quantitative assessment for the brain web dataset. The human visual
system, full and no reference image metrics are used to quantitatively measure the performance of the proposed
method. Apart from this, a comparative study has been also presented between the proposed and existing
method to describe the effectiveness of the proposed method. The obtained results demonstrate that the proposed
method is capable of simultaneously reducing Rician noise, preserving edges, restoring fine details, and
enhancing anomalies.

Key Words: Brain, Magnetic Resonance Imaging, Denoising Auto-Encoder, Enhancement, High Boost,
Restoration.

Introduction

The brain screening provides the structural overview as well as changes in the brain functionality [1]. It
describes the brain disorder and conditions in terms of abnormalities such as grey matter particles, tumors, clots
and masses. Epilepsy, schizophrenia, autism, Parkinson's, stroke, and dementias are the most common types of
neurological illnesses affecting the brain [2]. These disorders are raised due the alteration in the shape of brain
cells. The incidence and mortality rate by of brain disorder are increasing day to day. It can be only prevented
by the early diagnosis of the disorder.

Magnetic resonance imaging (MRI) is the widely used imaging tool for the diagnosis of brain disorders[3]. It is
popular due to its non-invasive property and less radiative nature. It concurrently uses a magnetic field and radio
waves simulated via computer to obtain the raw images of brain cells. The produced raw images are complex-
valued in nature and for the better visualization it is transformed into the magnitude valued image with the aid of
mathematical operations [4]. However, the acquired images have low signal-to-noise-ratio that confirms the
existence of noise in the image. The origin of noise varies from one source to other. The prominent sources of
noise include machine’s calibration, sensors, coils, environment illumination, acquisition, transmission, and
storage medium [5]. Literature shows that the MR magnitudes image generally comply to the Rician noise [6,7].
It is an undesired inherent characteristic of the image which is multiplicative in nature. It affects both the
image's readability features and clarity of the image. It confines the exact interpretation of the diseases by the
experts. Moreover, it reduces the high frequency as well as the fine detail information of the image such as
edges and boundary. Thus, the brain image restoration and enhancement are the two major concern that should
be addressed properly for the early diagnosis of brain disorder.

To achieve the restoration and enhancement of brain MR images in a single framework, an improved denoising
auto encoder deep learning based high boost filter (IDAEHBF) has been proposed. It combines the attributes of
denoising auto-encoder (DAE) [8] and high boost filter (HBF) [9] for the image denoising and quality
improvement respectively. The development of the proposed IDAEHBF begins with the swapping of
smoothening filter of high boost with the improved denoising auto encoder (IDEA). It is the first advancement
and it offers a better denoised-smoothen image of the noisy image. Furthermore, in the second advancement the
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efficacy of conventional denoising auto encoder (CDAE) has been refined with the help of the symmetry skip
connection [10] in order to form the IDAE. It provides a better correlation between the noisy pixel data with the
layers of auto encoder-decoder model.

The rest of the paper has been systematized as follows: section 2 reports the literature of existing denoising
methods in contrast to MRI images. Section 3 illustrates about the used dataset and the proposed methodology.
Section 4 presents the information of the performance assessment metrics in terms of human visual system, full
and no reference image metric. Section 5 describes the performance of the proposed IDAEHBF. And, section 6
presents an overall conclusion.

Literature Survey

There has been various method developed to alleviate the negative impact of the Rician noise. It skews the exact
position of brain lesions and makes medical diagnosis less precise. The denoising approaches for Rician noise
have been widely classified as spatial, transform, similarity, and partial differential equation (PDE) based filters
[11]. The mostly used spatial domain-based filter are median and wiener filter respectively. Gabor filter [6] and
wavelet method lies under the transform domain denoising filter. The similarity based denoising filters
comprises non-local means [12] and its modified form [13]. Furthermore, PDE-based techniques for MRI image
denoising include total variation [14], anisotropic diffusion [15], complex diffusion [16,17], and fourth order
partial differential equation [18]. Apart from this, some of the methods follows the image enhancement after the
image denoising.

Lee et al. [19] had used the properties of median and wiener filter for the denoising of T1 weighted brain MR
images of the brain web dataset. The performance was illustrated with correspond to qualitative and quantitative
assessment such as edge preservation index and coefficient of variation. Redhya et al. [20] had utilized adaptive
median filter to minimize the noise from brain MR images. The work was primarily developed for the
classification of Parkinson diseases. The image quality assessment parameters like mean square error (MSE),
image enhancement factor and peak-signal-to-noise-ratio (PSNR) were estimated to judge the effectiveness of
the method. Singh et al. [21] had compared the performance of median, gaussian and wiener filter for the
denoising of brain MR images. The efficacy was judged with respect to MSE and PSNR image metric. Ali et al
[22] had employed mixing concatenation residual network (MCR) for the gaussian and salt-pepper noise
elimination from brain MR images. In this method six consecutive convolutional layers with the rectified linear
unit (ReLU) were used for the denoising of image. The metrics such as structural similarity index map (SSIM),
PSNR and SSIM was determined as image quality assessment parameters. Kumar et al. [12] had clubs the PDE
based anisotropic diffusion and unsharp masking for the noise removal of brain MR images. The method
effectiveness was judged for MSE, PSNR, SSIM, correlation parameter (CP), and blind reference image spatial
quality evaluator respectively. Yadav et al. [18] had used the other PDE rooted method i.e., complex diffusion
for the elimination of Rician noise from MR images. In this method the image was treated as a complex-valued
object, where the real and imaginary parts correspond to the intensity and gradient of the image respectively.
The method efficacy was estimated for brain-web dataset and the metrics such MSE, PSNR, CP and SSIM were
used for assessment purpose. Zhang et al. [14] had employed total-variation for the restoration of brain MR
images. The method combines Fischer Burmeister function to regularize the total variation. The method
effectiveness was evaluated in terms of MSE, PSNR and SSIM. Thakur et al. [23] had compared the working
capability of denoising filters such as NLM, block matching three-dimensional filter, weighted nuclear norm
minimization and fast Fourier transform. All of these approaches were tested on MR images and assessment
metrics like PSNR and SSIM were analyzed. Kollem et al. [24] had used FPDE and quaternion wavelet
transform for the noise removal from the MR images. The method uses a diffusivity function to advance the
characteristic of PDE. PSNR, SSIM and MSE were evaluated to measure the performance of the method. Dinh
[25] had combined the attributes of contrast limited adaptive histogram equalization, denoise convolutional
neural network, Laplacian edge detector and marine predators’ algorithm respectively for the removal of noise
and enhancement of medical image. The method effectiveness was determined in terms of entropy, average
gradient, and mean light intensity. Kumar et al. [6] had applied a reshaped Gabor filter for the denoising of MR
images. The qualitative as well as quantitative assessment was performed to measure the efficacy of method.

The method such as ADF [15], and MCD [16] have an issue of over smoothening which obscures fine details.
The method based on ADMF [20], WF [21], MCR [22], and Gabor [6] produces a low contrast image and fails
to eliminate the noise. Furthermore, the methods like FPDE[18], NLM [23] and TV [14] have limited
performance in contrast to edge or high frequency information preservation. Thus, the main drawbacks of the
current approaches can be understood from the reported literature in terms of excessive smoothing, edge
blurring, loss of high frequency information and the formation of low contrast images. Therefore, an improved
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denoising auto encoder deep learning based high boost filter (IDAEHBF) has been presented to address these
key problems. The major contributions of the proposed IDAEHBF are as follows:

1) It proposes a method that clubs the features of high boost filter (HBF) and denoising auto-encoder
(DAE) in a single framework for the restoration and enhancement of Rician corrupted brain MR image.

2) It presents an improved denoising auto-encoder (IDAE) at the place of the smoothen low pass function
in high boost to readdress the restrictions of HBF.

3) To refine the efficacy of conventional DAE (CDAE) a modification has been employed. To add
encoder and decoder layers, symmetry skip connections are fabricated. This modification offers a better
learning and visualization of noisy pixels.

4) The proposed IDAEHBF has been validated on T1, T2 and PD weighted MRI images of brain web
dataset.

Research Methodology
The restoration and enhancement of Rician impacted brain MR images, an improved denoising auto encoder
deep learning based high boost (IDAEHBF) has been proposed. The collection of MR brain images is the first
steps in the development of the proposed method. The IDAEHBEF utilizes the features of conventional denoising
auto encoder (CDAE) and high boost filter (HBF). The function of CDAE is to eliminate the noise from the
images while a HBF is utilized for image enhancement. To increase the robustness of the HBF, the IDAE is
substituted at the place of low-pass module in HBF. This modification provides a better denoised image in
compare to the conventional low-pass approach. However, the CDAE have some limitations in terms of gradient
flow, multi-scale feature learning and mitigating information loss. So, to refine the performance of CDAE a
symmetry skip connection is added amid the layers of encoder and decoder part. Figure 1 shows the block
diagram of the proposed IDAEHBF.
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Figure 1: Flowchart of the proposed improved denoising auto encoder deep learning high boost filter
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Dataset Collection

To develop the proposed method IDAEHBF, brain web [26] dataset has been collected. It is an openly accessible
database that is used as a benchmark data for the research work. The complete description of the database is
given in Table 1.

Table 1: Information of the Brain Web Database

Key Description

Imaging modalities T1, T2, and PD

Types of noise variance 0%, 3%, 5%, 7% and 9%

Total Number of images 905 for each imaging modality
Image storage format Portable Network Graphics (PNG)
Accessibility Publicly

Size of image 181x127 Pixel

Proposed Improved Denoising Auto Encoder Deep Learning High Boost Filter

MRI screening provides information in the form of raw image data, which is primarily a complex valued data.
These raw image data are converted into magnitude MR valued images for simple interpretation. However, the
images are get affected by noise during the image acquiring, transmitting and storing respectively. It restricts the
effectiveness of qualitative and quantitative measurements derived from MR images. The MRI image's general
form [27] can be represented as:

g=m+*xh+a (1a)
g = Rician*h +a (1b)

where h is the MRI image affected by Rician noise, a is the additive noise, and g is the magnitude MRI image.
For the development of the method, additive noise is neglected. Let the digitized form of magnitude MR image
is expressed by [ then its the probability distribution correspond to Rician noise [16] may read as:

P(M,0) = % exp exp [%] I (;—A;I) H(M) (2)

where, I represent the amplitude of the noiseless image, o2 is the variance, J,(.) is a first-order modified Bessel
function with zero order, H(.) is the unit step Heaviside function, and M is the magnitude of image. In order to
restore the image information, improved denoising auto encoder has been employed. The IDAE is a modified
form of conventional denoising auto encoder (CDAE) [8]. The CDAE uses a stochastic approach to reconstruct
the noisy image. It comprises encoder, latent space and decoder. The encoder takes the input noisy image and
maps it to a lower-dimensional representation. Moreover, this lower-dimensional representation is usually
referred to as the latent space. The latent space captures the underlying structure of the image while filtering out
the noise. Later, the decoder takes the code produced by the latent space and attempts to reconstruct the
denoised image using lower dimensional representation of the noisy image.

Let's [ is noisy input image and the encoder function as E. The encoder maps the noisy input image I to a lower-
dimensional representation Z with the aid of the latent space. The overall process may read as:

Z=E(l) 3)
Equation 3, shows the conversion of noisy image into its lower dimensional form. Further, these lower

dimensional data is processed by decoder D in order to achieve the reconstructed denoised image. The above
statement mathematically governed as:

Ireconstruted/denoised = D(i) (4)

The loss function quantifies the discrepancy between the reconstructed data Ieconstruted/denoisea @nd the noise
free reference image u. MSE loss is a commonly used choice for DAEs:

1 M-1 N-1
MSELoss = m . z [u - Ireconstruted/denoised]2 (5)
=0 Jj=0
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However, the performance of CDAE is limited with respect to the gradient flow and loss function. The refine the
efficacy of CDAE, the symmetry skip connection has been incorporated between the layers of encoder and
decoder. Figure 2 shows the architecture of proposed IDAE with symmetry skip connection [10]. It allows
information from one layer to be directly fed into a later layer of the network, bypassing some intermediate
layers. By adding skip connections, the model can have access to both the high-level feature representations
learned in the encoder and the low-level details present in the input image. It enhances the model's ability to
reconstruct the original denoised image more accurately.
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Figure 2: Proposed Improved Denoising Auto-Encoder

The image obtained by IDAE is a low contrast image. So, to boost the image quality IDEA is used as a low pass
operator (LPO) in HBF [9]. This idea is incorporated due the limitation of LPO of conventional HBF such as
image denoising, edge restoration and fine details preservation respectively. Moreover, this modification also
offers an absolute image quality improvement. Thus, all the three process i.e., denoising, restoration and
enhancement of the image occurs in a single framework. To ease the implementation let’s I;pur =
Lreconstruted/denoiseas Where Iipap is resultant image. The process of creation of IDAEHBF initiates with
substituting the IDAE at the place of LPO of conventional HBF. It may define as:

Ipo = Lipar (6)

where, I;p, is the low pass image of HBF; I;p,5 is the reconstructed denoised image obtained by proposed
IDAE as mentioned in equation 4. To produce the high pass image via HBF process, the resulting image of I, 45
has been subtracted from the input image I. It is mathematically expressed as:

Iupipag =1 —Iipag ™

where, I;pipag 18 high pass form of input image I. The high pass form of an image shows the details of image's
edges and boundaries. Furthermore, to estimate the high boost form of the image, the scaled version of the input
image is added with the resultant image of Iyp;p4g- It is expressed as:

IIDAEHBF = (A - 1)1 + IHPIDAE (8)

where, I;pspnpr 1S the high boost image of the input image /. It also illustrates the resorted, denoised and
enhanced form of the input image, so for simplicity it may denoted as: I;pagygr = Igpg- Furthermore, A is the
amplification factor [28]. It controls the amount of boosting and it should be a positive number where (4 >)].
Table 2 shows the pseudo code of the proposed improved denoising auto encoder high boost filter.
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Table 2: Pseudo code of proposed IDAEHBF
Input: {u(i,j), 1(i,j)}, where I(i,j) and u(i,j) are noisy and reference image respectively
Start Computation:
Step 1: Give the input image (i, j) to start the computation process.
Step 2: Compute the reconstructed denoised image via improved denoising auto encoder (IDEA) i.e.,
equation (4)

Ireconst‘ruted/denoised = D(i)

Step 3: Substitute the IDEA as a low pass operator in high boost filter (HBF) and compute the high pass
image using equation (6) and (7) respectively

Iipo = Iipae
and, Iypipag =1 — lipae
Step 4: Compute the high boost image using equation (8) as:

Lipagur = (A= 1).1 + Iypipag

Step 5. Evaluate performance metrics.
Step 6. Store the result
End Computation
Output: {I;pagupr(i,J)}, where I;psgygr (i, J) is improved denoising auto encoder high boost image

Performance Evaluation Metrics

The proposed IDAEHBF's efficacy has been measured using multiple performance evaluation metrics. The
metrics are divided with respect to human visual system [29], full and no reference [30] image quality
assessment measures. Table 5 depicts the mathematical formulation of the measures used.

Table 5: Performance Evaluation Metrics

Metrics Mathematical Notation
Full reference | Mean-Squared 1 = =
Assessment Error (MSE) MSE = WN Z Z [ui,)) — Irpe (i, )]?
Parameters i= j=0
(FRAP) [30] Peak Signal-to- L-1
Noise Ratio (PSNR) PSNR =10 MSE db
Correlation Y @) —mw)Y  Uroe(L)) = Higpg)
Parameter (CP) CP =
B @D =BT Uaelio]) — Hgpe)?
Normalized i Z?];ol [u(@, ) — Irpe (LI
NAE = - - -
Absolute Error M-1 =100, )
(NAE) o A= '
Human visual bt gp g Oulgp
system ver = 2 2 2 2
Y . . (:uu + MIRDE )(Ju + O-IRDE )
Assessment Universal  Quality here,
Parameters Index (UQI) 1 M-1 N-1
(HVSAP) [29] Cuinor = 3 =1 (@) = ) Uro (0 )) = i)
=0 j=0
Structural Cuuttigpy + €1)2oyrgy, + C2)
Similarit Ind SSIM = —— 2 2 2
mriarity ndex (Hu + ‘uIRDE + Cl)(o-u + O-IRDE + CZ)
(SSIM)
No reference o Aup @) = Laowa (i)
Assessment Perceptual Ips; (i,)) = { cos cos (A0, )))
Parameters Sharpness Index Lnax (i J) = Lnin iy ) Ly 7)) = Liown (i, J)
(NRAP) [30] (PSD) 1(i,)) Y Teos cos Ae3, )
Iup(i:j) - Idown(i:j)
> . ; oth ]
= b cos cos (MBI, j)) otherwise

Where u and Ipy are the reference image and resultant image of IDEAHBF respectively. o2 and u are the
variance and mean of the corresponding image.
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Results and Discussion

The performance of the proposed IDSEHBF has been evaluated in terms of qualitative and quantitative
assessments. The investigation has been evaluated for T1, T2 and PD weighted brain images of the Brain Web
MRI database [26]. Apart from this, a comparative performance study with respect to qualitative and
quantitative analysis has been also presented between the proposed and existing methods. For the performance
purpose the value of A in HBF has been taken 5.

Qualitative assessment:

The improvement in image quality is measured with the aid of qualitative analysis. To perform the analysis T1,
T2 and PD MRI images has been used with respect to the 9% noise variance. However, the process of
evaluation stands same for the other noise variances such as 3%, 5%, and 7% of T1, T2 and PD brain MR
images.

Figure 3 exhibits the result of all steps involved during the implementation of proposed IDAEHBF for T1 MRI
brain images. It comprises of total three images where (a) correspond to sample image; (b) is the noisy form of
the sample image; and (c) is the restored, denoised and enhanced image obtained by the proposed method.
Furthermore, Figures 4 demonstrates the qualitative result for T2 weighted MR image with 9% noise variance.
The very first image i.e., (a) refers to sample input image; the second image i.e., (b) is the noisy image; and the
last image i.e., (c) is the restored, denoised and enhanced image attained by the proposed IDAEHBF. In similar
way, figure 5 exhibits the qualitative result for PD weighted MR image with 9% noise variance. The image (a)
refers to sample input image; the image (b) is the noisy image; and the last image (c) is the restored, denoised
and enhanced image attained by the proposed method. Figure 6 shows the illustrative comparative qualitative
assessment. The comparison is evaluated with 9% noise variance of T1 MRI brain image. In these figures,
image (a) to (i) are the resultant images of FPDE[18], NLM [23], WF [21], MCD [16], TV [14], ADMF [20],
MCR [22], ADF [15], Gabor [6] and Proposed IDAEHBF respectively.

(b)

Figure 3: Result of proposed method for T1 weighted MR image (a) Noiseless image (b) Noisy Image (c¢)
Output image IDEAHBF

300 {8

(b)
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Figure 4: Result of proposed method for T2 weighted MR image (a) Noiseless image (b) Noisy Image (c)
Output image by IDEAHBF

Figure 5: Result of proposed method for PD weighted MR image (a) Noiseless image (b) Noisy Image (c)
Output image by IDEAHBF

(h) @
Figure 6: The output pictures acquired by the proposed method and other ways that already exist for T1
weighted MR image where (a) FPDE[18], (b) NLM [23], (¢) WF [21], (d) MCD [16], (e¢) TV [14], (f) ADMF
[20], (g) MCR [22], (h) ADF [15], (i) Gabor [6] and (j) Proposed IDAEHBF

®

Quantitative assessment:

The performance of the proposed IDAEHBF has been assessed with the aid of quantitative analysis. It judges
and compares the proposed method’s efficacy with other existing methods in terms of numeric value. The values
are obtained by implementing the performance assessment parameters as mentioned in section 4. The
quantifiable analysis has been calculated for the entire images of dataset. The comparative quantitative includes
the results of FPDE[18], NLM [23], WF [21], MCD [16], TV [14], ADMF [20], MCR [22], ADF [15] and
Gabor [6] filters which is reported in literature.

Table 3, 4 and 5 demonstrate the comparative numerical evaluation between the proposed and other existing
methods for T1, T2 and PD brain respectively. It includes the performance assessments parameters of FRAP,
HVSAP, and NRAP respectively. From the Table 3, the values of metrics such as MSE, PSNR, CP, NAE, UQI
and SSIM and PSI have the following numeric scores of the proposed method 0.0227, 63.4917, 0.9465, 0.7429,
0.4423, 0.7242 and 0.6752 respectively. Tables 4 shows the comparative quantitative result for the entire images
of 9% noise variance of T2 dataset with the following values MSE, PSNR, CP, NAE, UQI, SSIM and PSI
respectively 0.0337, 67.8120, 0.9439, 0.9332, 0.6418, 0.0.4923 and 0.6782 respectively. Table 5 shows the
quantitative result of PD MRI images. The numeric values of MSE, PSNR, CP, NAE, UQI, SSIM and PSI are
0.0551, 65.2952, 0.9432, 0.8991, 0.8592, 0.5395 and 0.8954 respectively. The comparative graphic line plot of
Table 3, 4 and 5 is illustrated by Figure 7, 8 and 9 respectively.
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Table 3: Comparative quantitative evaluation amid the reported methods and proposed IDAEHBF for T1

Brain MR image with 9% noise variance

Methods Parameters
MSE PSNE S8IM QI CP MNAE P5I

FFDE[18] 04603 356897 0.7394 07314 04622 0.7236 0314
WNLM [23] 03713 372431 072521 07121 04523 07762 042135

WF [21] 06213 330214 07424 07245 04432 0.7923 04682
MCD [16] 05413 375215 081331 0.7931 04332 03343 03213

TV [14] 0.7932 321231 07215 0.7347 0.4454 0.7632 04632
ADMF [20] 07827 312331 07825 07281 04332 07792 04627
MCE [22] 0.6942 313231 07336 07267 04789 0.7823 03829
ADF [13] 08231 202341 08126 07512 035128 07154 04820
Gabor [6] 0.1638 613452 08734 09123 0.6347 035132 05728
Proposzed 00337 6T.E120 09439 09332 06418 04923 06782

Table 4: Comparative quantitative evaluation amid the reported methods and proposed IDAEHBF for T2

Brain MR image with 9% noise variance

Methods Parameters
MEE BENE S5IM UQI CP MNAE P&l
FFDE[12] 060350 383121 07932 05725 04721 08123 04780
WNLM [23] 06923 382025 07987 05582 04697 08415 035629
WEF [21] 0.53936 34545 0.8051 03681 04645 0.8523 06331
MCD [16] 03251 45 6542 08123 0.5515 03007 07764 06692
TV [14] 03351 443191 07632 03219 04608 08408 07339
ADMEF [20] 03230 438021 07733 03492 0.35480 06123 07792
MCE [22] 03313 44 6129 08949 03629 03792 06361 07139
ADF [13] 02319 4749219 07830 06249 0.3303 0.7921 06295
Gabor [6] 0.0692 3TOR2 090124 07492 07742 03023 07215
Proposed 00351 632052 00432 0.2001 0.28502 03303 02054
Methods Parameters
MSE PSNR S5IM UQI CFP NAE PSI
FPDE[13] 03210 27.1439 0.6352 0.4367 03092 0.7892 0.3762
NLM [23] 0.4792 24.156 0.6425 0.4527 03159 0.7712 032146
WF [21] 03287 26.5492 0.6782 0.4732 03026 0.7737 0.3792
MCD [16] 0.7911 22,456 0.6621 0.4623 03153 0.8032 0.3498
TV [14] 03162 24.1567 0.7154 0.4713 0.2915 0.7752 0.6715
ADMEF [20] 035216 26.8927 0.7692 0.4727 03691 0.7052 03215
MCR [22] 0.5716 23.456 0.7689 0.5556 03793 0.7792 0.3494
ADF [15] 0.5826 232621 0.5142 0.5681 0.4013 0.7952 0.3215
Gabor [6] 0.0798 550215 0.9012 0.6628 03419 0.7654 0.6315
Proposed 0.0227 63.4917 0.9465 0.7429 0.4423 0.7245 0.6752

Table 5: Comparative quantitative evaluation amid the reported methods and proposed IDAEHBF for PD

Brain MR image with 9% noise variance
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Figure 7: Line plot comparing the variables in Table 3 with respect to T1 images (a) shows the values
MSE, CP, NAE, UQI, SSIM and PSI respectively; (b) illustrates PSNR

1.0 1
L]
>
0.8
Gl e S S e SR
[\ ¢ 4
. /@ -« A <
® ® / \ \ 2
0.6 - X E% it 7
[y 2
/ \ / L ®
A/ A\ a\—a \
$..] AT V o~ 8
$ 1044 < g \ W3 A = =
8§ v g @ «
0.2+ [m s | “\‘
: SSIM: \\
ual \
v cP | @
NAE |
0.0 - : psi_| -
T T T T T T T T T T 1
o & = &
R A A S
<
Methods
(a) (b)

704

60 o

50 o

40 +

30 4

20 +

=— PSNR|

& év"'&‘?‘ﬁ‘a‘*’#q@fb

Methods

Figure 8: Line plot comparing the variables in Table 4 with respect to T2 images (a) shows the values
MSE, CP, NAE, UQI, SSIM and PSI respectively; (b) illustrates PSNR
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Figure 9: Line plot comparing the variables in Table 5 with respect to TD images (a) shows the values

MSE, CP, NAE, UQI, SSIM and PSI respectively; (b) illustrates PSNR;

The proposed method uses four encoding and decoding layers respectively. The encoding layers reduce all the
data and to a single neuron and then the decoding layers use up sampling to increase the data in the model. This
process removes the noise in the images and ensures that only the important data remains. The proposed
IDAEHBEF has been trained for 100 epochs. Figure 10 shows a graphical plot of PSNR vs number of epoch. The
graph shows the variation PSNR values while increasing the epoch during training of the model.

© International Neurourology Journal

772

DOI: 10.5123/inj.2023.4.in82

ISSN:2093-4777 | E-ISSN:2093-693 1
Vol. 27 Iss. 4 (2023)


https://einj.net/index.php/INJ/article/view/246

INTERNATIONAL
NEUROUROLOGY JOURNAL

62.8

62.6 -
]
62.4 - /
1 _— -F'F- -
62.2 - / \/ e

62.0

- -/""'\-:--'

PSNR Values

61.8—- L

o 20 40 60 80 100
Number of Epochs

Figure 10: Plot of number of epochs vs PSNR

Conclusion

The primarily objective of the present work was to restore, denoise and enhance the brain MRI images which is
usually affected by Rician noise. The objective was accomplished with the aid of the proposed improved
denoising auto encoder deep learning based high boost filter (IDAEHBF). The IDAEHBF combines the
attributes of conventional denoising auto encoder (CDAE) and high boost filter (HBF). The following
modification had been implemented in order to the develop the IDAEHBF. It was begun with the
implementation of IDEA where the CDAE was clubbed with the symmetric skip connection between the layers
of encoder and decoder. It helps to reduce the issues of gradient flow, multi-scale feature learning and mitigating
information loss. Furthermore, the IDEA was clubbed with HBF where the IDEA provides a better reconstructed
denoised image as an alternative of conventional approach. Thus, both the modifications deliver a single
framework for restoration, denoising and enhancement of brain MRI images instead of performing separately.
The performance of the proposed IDAEHBF was measured on the 9% noise variance of T1, T2 and PD brain
image respectively. The dataset was collected from the Brain web MRI database. The performance was
demonstrated in terms of qualitative as well as quantitative study. The qualitative study was used to exemplify
the improvement in image quality which was obtained by the proposed IDAEHBF. Furthermore, the quantitative
study was articulated with respect to the metrics of FRAP, HVSAP, and NRAP to measure the efficiency of the
proposed IDAEHBF. The metrics like MSE, PSNR, CP, and NAE were employed as FRAP. UQI and SSIM
were utilized as the parameters of HVSAP. The NRAP assessments parameters was cast-off in terms of PSI.
Moreover, the performance of the proposed IDAEHBF was also presented in the form of comparative study. The
existing methods like FPDE[18], NLM [23], WF [21], MCD [16], TV [14], ADMF [20], MCR [22], ADF [15]
and Gabor [6] were used for the comparative study. Based on both qualitative and quantitative studies, it has
been found that the suggested IDAEHBEF is the best way to restore, denoise, and improve MRI images with
Rician noise while keeping their edges and boundaries. The IDAEHBF's results can be used to find the area of
interest for image segmentation as well as to improve the accuracy of the feature extraction and classification
processes.
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