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Abstract 
In this paper, the classification of arrhythmia diseases using hybrid novel models dependent on CNNs and Long 

Shorter Term Memory with Particle Swarm Optimization Algorithm is presented along with the simulation 

results. An electro-cardiogram, viz., ECG serves as a non- invasing type of diagnostic tool for cardiac’s 

arrhythmias (CA’s). The accurate identifications of CAs relies on effective classification methods, which have 

traditionally employed diverse mathematical & computational strategies. In these studies, we present a novel 

computational based models utilizing the particle swarm’s optimization [PSO] algorithms, convolutional neural 

nets [CNN], and long short-term memory (LSTM) for the classifications of 6 CA class sourced from the MIT 

based BIH Arrhythmias Datasets [MITDB]. The primary objective of the PSOs are to optimizing the hyper-

parameters defining the layered based architectures of the CNN, aiming to enhance accuracies while minimizing 

categorical based cross entropial errors [CE]. The outcomes underscore the reliability of the proposed model, 

signifying an innovative approach that eliminates the need for manual hyperparameter selection in the layered 

architectures of the CNNs based on LSTM. This research explores the Classification of Arrhythmia Diseases 

through the innovative integration of Convolutional Neural Nets (CNN’s) & the Long Short Term Memory 

[LSTM] network within a Hybrid Models. The study leverages the optimization capabilities of the Particle 

Swarm Optimization (PSO) Algorithm to enhance the model's performance. The synergistic combination of 

these technologies aims to improve the accuracy and efficiency of automated arrhythmia classification, 

contributing to advancements in medical diagnostics and patient care. 

Key Words: Cardiac arrhythmias classification, convolutional neural networks, long short term memories, 

particle swarm’s optimizations. 

Introduction   
Cardiovascular diseases (CVDs) stand as a major global cause of mortality, contributing to 17.9 million deaths 

in 2019 alone, accounting for 32% of all recorded deaths. Of these, 85% resulted from heart attacks and strokes. 

The associated burden extends to 40.8 million disability-adjusted life years, encompassing both premature death 

and years lived with disability. Projections estimate that by 2030, almost 23.6 million individuals may succumb 

to these conditions. Arrhythmias, encompassing diverse heart electrical abnormalities, are a subset of CVDs and 

may lead to severe consequences, including stroke and sudden cardiac death. Commonly associated with 

conditions like coronary artery disease and hypertension, the classification of arrhythmias traditionally relies on 

the expertise of medical specialists analyzing electrocardiograms (ECGs) [76]. 

 

Recognizing the limitations of manual analysis and the growing need for efficient solutions, researchers explore 

alternative strategies, with a notable focus on ML algos [MLA], DL Algos [DLA], and metaheuristic algorithms 

(MA). These computational approaches offer the potential to enhance the speed and efficiency of classification, 

prediction, and optimization tasks, thus addressing the challenge posed by the increasing patient-to-specialist 

ratio. In this context, the present research proposes a hybrid computational model, combining Particle Swarm’s 

Optimizations [PSO] & the Convolutional Neural Nets [CNN] (H PSO CNN), to for the classification of the 6 

classes w.r.t. the arrhythmias based on the ANSI-AAMI EC57-1998 standards. Leveraging arrhythmia datas 

from the MIT-BIH Arrhythmia Database (MITDB), the hybrid model aims to optimize the CNN’s 

hyperparameters defining its layered architecture. The PSO conducts this optimization through a 4D search 

spaces, with the cost functions determined by the Cross-Entropy (CE) error to evaluate the CNN's learning 

performance [76]. 

https://einj.net/index.php/INJ/article/view/248
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This computational framework signifies a contemporary approach to arrhythmia classification, leveraging the 

synergy between metaheuristic optimization and deep learning algorithms. The proposed model aligns with the 

significance of MITDB as a widely used and endorsed data source in cardiology research. The integration of 

PSO and CNN aims to expedite the optimization process, potentially enhancing the accuracy and efficiency of 

arrhythmia classification. The complete procedures of electro-cardiogram [ECG] signal classifications are 

diagrammatically represented as shown in the Fig. 1 [72] [76]. 

 

 
Fig. 1 : The complete procedures of electro-cardiogram [ECG] signal classifications [72] 

 

Contributions  

The contribution of the H PSO CNN model can be interpreted as below as 5 important categories.  

Contribution 1 : Automated Hyperparameter Optimization: H-PSO-CNN introduces an automated approach to 

optimize hyperparameters for the Convolutional Neural Network (CNN) used in arrhythmia classification. The 

Particle Swarm’s Optimizations [PSO] algorithm efficiently explores the hyperparameter space, enhancing the 

CNN's performance without manual intervention. 

Contribution 2 : Enhanced Classification Accuracy: By leveraging the PSO algorithm, H-PSO-CNN seeks to 

find the optimal hyperparameter configuration for the CNN, leading to improved classification accuracy. This 

automated optimization process contributes to the model's ability to adapt and perform well across different 

arrhythmia classes. 

Contribution 3 : Reduced Dependency on Manual Tuning: The model reduces the reliance on manual tuning of 

hyperparameters, a common practice in deep learning models. This automation not only saves time and effort 

but also minimizes the risk of suboptimal configurations, allowing for a more robust and efficient arrhythmia 

classification. 

Contribution 4 : Versatility and Generalizability: H-PSO-CNN's approach to hyperparameter optimization 

enhances the model's versatility. The automated optimization is adaptable to various classification tasks beyond 

arrhythmia, showcasing the model's potential application in different medical and non-medical domains. 

Contribution 5 : Efficient Search in Hyperparameter Space: The PSO algorithm efficiently navigates the 

hyperparameter space, facilitating a more systematic and effective exploration. This contributes to faster 

convergence and improved overall efficiency in finding optimal configurations for the CNN architecture. 

Contribution 6 : Integration of Metaheuristic Optimization: The integration of PSO as a metaheuristic 

optimization technique distinguishes H-PSO-CNN, offering a novel and effective strategy for optimizing deep 

learning models. This metaheuristic approach contributes to the model's adaptability and robustness in handling 

complex classification tasks. 

 

In summary, the H based PSO type of CNN model contributes to the field of arrhythmia classification by 

introducing an automated and efficient approach to optimize hyperparameters, leading to enhanced accuracy and 

reduced dependence on manual tuning. The model's versatility and integration of metaheuristic optimization 

make it a promising solution for various classification challenges beyond arrhythmia. 

 

Modelling of Optimal Layered Architectures of the CNN system 
Introducing a novel computational model designed to automate the creation and discovery of an optimal layered 

architecture, along with its corresponding hyperparameters, for seamless execution of classification tasks by a 

CNN_LSTM. This innovation streamlines the conventional manual process of searching for these architectures, 

ensuring the generation of new configurations that consistently deliver satisfactory performance. The model 

significantly reduces both time and computational costs associated with hyperparameter optimization for the 

https://einj.net/index.php/INJ/article/view/248
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CNN_LSTM architecture. By automating this task through Particle Swarm Optimization (PSO), it eliminates 

the need for manual selection of hyperparameters, providing an efficient and cost-effective solution [76]. 

 

At the heart of the H PSO CNN_LSTM model are an interpreter which translates the PSO-generated population 

into a format comprehensible by the CNN. This interpreter plays a crucial role in obtaining the cost function for 

each particle, corresponding to the Cross-Entropy (CE) value. It also facilitates the seamless update of 

populations in both w.r.t. PSOs & CNNs based on newer value & the changes which are being calculated using 

the  metaheuristic operator. Without this interpreter, the interactions b/w the metaheuristic algorithm [MA] & the 

CNN_LSTM will be impossible [76]. 

 

The HPSOCNN models retains the best layered architecture discovered with the PSO, along with all the 

associated hyper-parameters. This storage enables the evaluation of performance with test data that the 

CNN_LSTM has not previously encountered, establishing a reliable and universally applicable computational 

framework for diverse classification tasks in other scientific domains. Results obtained with this model 

demonstrate the successful enhancement of accuracy in classifying Cardiac Arrhythmias (CAs) from the 

MITDB dataset through the synergistic fusion of PSO and CNN_LSTM [76]..  

 

Related works carried out  
In the realm of cardiac arrhythmia (CA) classification and prediction, traditional algorithms, relying on feature 

extraction and classification, were prevalent before the advent of Multi-Layered Architectures (MLA), Dynamic 

Layer Adaptation (DLA), or Metaheuristic Algorithms (MA) [22], [23]. These traditional methods often 

involved intricate processes and additional procedures, some of which are incorporated into DLA. Notable 

among these algorithms were statistical techniques like the Markov model [24], [25]. The landscape evolved 

with the introduction of MLA, encompassing algorithms such as SVM’s, k type of nearest neighbour [KNN’s], 

random forest {RF}, principal component’s analysis [PCA], and other types [26]-[31]. 

 

While MLA has been pivotal in classification and prediction tasks, its limitations in productivity for modern 

applications and scalability with the ever-growing digital information have been noted. DLA emerges as a more 

sophisticated approach, allowing an increases in the depths of the internal layer within ANN’s. These 

advancement eliminates certain preprocessing requirements of MLA, facilitating more accurate results [32]. The 

last decade has witnessed a surge in research papers addressing arrhythmia classifications thro’ the DL 

techniques, focusing on DLA such as multilayer perceptrons [MLP], recurrent neural networks [RNN], shorter 

term memory based neural networks [LSTM & the convolutional neural network (CNNs). Of these, CNN has 

garnered the most attention, constituting a substantial portion of recent publications [33]-[35]. 

 

In exploring DLA applications, researchers have demonstrated various neural network models' efficacy in CA 

classification. Examples include the utilization of MLP for five-class CA classification with an accuracy of 

98.72% [36]. RNN and LSTM have been extensively employed, with studies reporting accuracies ranging from 

82.5% to 99.80% for different classes of CA [38]-[41]. CNN, being the most prominent DLA, has been featured 

in numerous publications, achieving high accuracy rates, such as 98.91% for two classes and 98.45% for eight 

classes [43]. Hybrid models, combining different neural network types, have also been proposed. For instance, a 

CNN-LSTM model achieved 99.89% accuracy in classifying six classes of CA [47] [76]. 

 

Metaheuristic Algorithms (MA) have shown promise in optimizing neural network performance. Although 

fewer in number compared to MLA and DLA applications, studies employing MA have reported notable results. 

Hybrid approaches, combining MA with CNN, attained accuracies of 99.32% and 93.19% for six-class CA 

classification [50]-[51]. Additionally, combining MLP with Particle Swarm Optimization (PSO) achieved an 

accuracy of 99.44% for five-class CA classification [52]. Furthermore, a hybrid model using modified Pigeon 

Inspired Optimizer (MPIO) and DNN’s which are achieved with an accuracies of 99.01% [53] [76]. 

 

Beyond the medical field, hybridized model combining MA & ANNs have demonstrated effectiveness in diverse 

applications. For example, a combination of stochastical fractal searching [SFS]  guided whales optimizations 

algorithms [WOA] with CNN-LSTM achieved recognition accuracies ranging from 98.13% to 99.50% in 

speech emotion recognition [54]. In contrast, a model using the cuckoo searching optimization algo [COA] 

achieved a accuracies of 98.63% in a cancer classification task [55]. These examples underscore the diverse and 

promising approaches taken in the fusion of MA and neural networks for various classification tasks, including 

cardiac arrhythmia. The continued exploration of hybrid models showcases the potential for further 

advancements in accuracy and efficiency across different domains [76].  
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Preliminaries Signal Classifications  
Here, we discuss about the arrhythmia in ECG signals along with the datasets that are used for the classification 

purposes.  

 

Arrhythmia in ECG signal  

The ECG signal encompasses various waves, each offering insights into the heart's activity. The P wave signifies 

the electrical current in the atria, originating using the sine nodal point [SA] & spreading across the atriums. 

Conversely, the QRS complexed representing ventricular electric depolarization in the heart lowered chamber, 

consisting for a Q waves, an R waves, and an S waves. Then, the T waves will indicates their brief resting 

period, highlighting ventricular repolarization. A standard ECG signal includes P, QRS & the T wave, with the 

QRS intervals measuring the total durations of ventricular tissues de-polarizations. The Fig. No. 1 illustrates the 

ECG signals using the PQRST segments. QRS’s detections will serves as a crucial reference for automated ECG 

analysis algorithms, typically requiring noise removal or suppression before detection [61]. Arrhythmias, 

whether regular or irregular in morphology, could occur at all point in the ECG’s signals, and their identification 

relies on the distinctive shape of the signal. The datas will be commonly presented in a coordinate based planar 

region (x & y), where the x axes denotes elapsed times, and the y-coordinate represents their values of electrical 

impulses as shown in the Fig. 2 [73] [76]. 

 

 
Fig. 2 : A systematic representation of the PQRST waveforms [73] 

 

ECG datasets 

Over the past five years, the MIT-BIH Arrhythmia Database (MITDB) has served as a benchmark for 

developing algorithms, particularly those incorporating Multi-Layered Architectures with Dynamic Layer 

Adaptation (MLA-DLA) or Metaheuristic Algorithms (MA), aiming to achieve optimal performance in cardiac 

arrhythmia (CA) classification. The dataset, originating from 50 patients at JSS Medical College in Mysore 

[62][63], provides a substantial volume of data for both learning and testing phases. The recording, digitized & 

labelled by multiple cardiologist, yield 1 Lakh annotations or the CA’s, categorized in to 6 class according to 

their AAMI EC-57 standards [20], [62]. The entire MITDB dataset can be freely accessed through Physionet 

ATM Bank [18], and a structured organization of this data is available in [63].  Fig. No. 3 gives the Data Set 

Counts & Classifications (taken from various reference papers) [76]. 

 

Data set classification types & the Datasets counts 

https://einj.net/index.php/INJ/article/view/248
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Fig. 3 : Data Set Counts & Classifications 

 

Convolutional Neural Networks 

A Convolutional Neural Network (CNN) systematically learns the spatial hierarchies of the datas with 

recognizing both higher & lower levelled pattern. Typically, its mathematics based structures encompasses 3 

type of interconnected layer, viz., the convolutional [Conv], pooling [Pooling’s] & fully connecting [FC] layer. 

Conv & Pooling layer serve the dual purpose of feature extraction, capturing details like colors and edges, as 

well as dimensionless reductions. While the orders of appearances b/w Conv & Pooling layer can vary, it are 

crucial that the first layer is Conv and the last one is Pooling. FC layers are conventionally placed at the end of 

all CNN architectures [65]-[70]. The Fig. 5 illustrates the general layer type of architectures of a CNNs, with 

input processed through each layer defined with the hyper-parameters, behavior’s nature’s, activating functions 

& the o/p characteristics [64]-[65]. Then the outputs of every layers serves as inputs for then their subsequent 

ones, with the complexities increasing as their total nos. of layer [NC] rises. The current manual definition of 

NC is typically linked to the number of classes for prediction and dataset characteristics. The architectures in the 

Fig. No. 3 are a generic representation; the totalled layer and hyperparameter values depend on the classification 

task's complexity. The selecting of the hyper-parameter, an manual processes in recent years, involves hand-

crafted adjustments to assess CNN performance and identify the optimal architectures for the given 

classifications tasks as shown in the Fig. 4 [74] [76].. 

 

 
Fig. 4 : CNN based max-pooling layer design [74] 
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Convolutional Layers 

The cornerstone of a CNN is the convolutional layer, comprising filters or kernels with learnable parameters. 

Typically, these filters are smaller than the dataset input. During training, the filters convolving with the inputs, 

gdnerating a featured maps. This convolution involves movement of the filter across the input’s receptive field 

to identify and verify the presence of features [76].  

 

Pooling Layers  

This layer grouping plays a role in diminishing input dimensionality, thereby reducing parameters during 

training. Aggregation, akin to convolution, involves sweeping the entire input with a filter. However, this filter 

lacks weight. Two primary sub-types of aggregations are Avg of the Pooling & Max based Poolings. Avg based 

Poolings calculates the averagings of the element within their filter-covered featured mapping regions, whereas 

Max based Poolings select the max. elements in their same regions [76]..  

 

Flatten Layer  

Then, Flattened layers are employed in CNN’s with a 2D input. Further, the purpose was to transform their 2-D 

matrices generated by groups featured map for a unified, elongated linearized vectors. This flattened matrices 

serves as the inputs to their Fully Connected [FC] layers for their classification of the inputted datas [76]..  

 

Fully Dependent Connected Layers  

Thess layers conducts the classifying tasks using the featured vectors extracted by preceding layer & the 

respective filter. While the Conv & the Pooled layer often employ ReLu function, FC layer typically leverage a 

Softmax activation function for proper input classification, yielding probabilities in the range of 0 to 1 [76].  

 

Long Shorter Term Memory [LSTM] 

This is a Deeper Learning (DL) network designed for handling sequential or time series data. It's an advanced 

form of Recurrent based Neural Networks [RNN’s] known as Longer Shorter Terms Memories [LSTM]. Unlike 

regular RNNs, LSTMs can maintain information for an extended period, allowing it to capture long-term 

dependencies [7]. The architecture of LSTM includes three gates: the forget gate, which determines whether to 

remember information from the previous time step; the input gate, which learns from the cell input; and the 

output gate, responsible for transferring updated information to the next time step. Additionally, LSTM features 

a cell state that retains information across all cycles and a hidden state for shorter term memories [76]. 

 

Particle based Swarm Optimizations [PSO] 

Particle based Swarm Optimizations [PSO] is the meta-heuristic methodology designed to locate global 

maximas or minimas within a solution spaces. Drawing inspiration from the coordinated movement observed in 

flock of bird or school of fishes, PSO emulates their collective behavior for the individuals, determining their 

directions, speeds, and accelerations based on both individual decisions and the group's dynamics [68], [69], 

[70]. Originally proposed by [67], PSO has undergone various modifications, yet its fundamental operators have 

endured. The algorithm calculates new and optimal positions by determining velocity, taking into account each 

particle's better global positions & its current best positions [76].. 

 

H PSO CNN LSTM Approaches  

The H PSO CNN LSTM model is a hybridized approach that capitalizes for the strengths for both CNN-LSTM 

and PSO algorithms. CNN-LSTM is preferred for its effectiveness in classifying cardiac arrhythmias (CAs) due 

to its capability to extract features and perform classification in a single step. Concurrently, PSO, a reliable 

metaheuristic technique, is selected for its proficiency in finding optimal solutions within a defined population, 

tailored to efficiently meet the objective function. The choice of algorithm depends on the context of the 

problem, and in their case of H PSO CNN LSTM, PSO’s seeks the better globalized solutions [p_gbest] by 

evaluating and selecting the most favorable solutions in the population, aligning with the specified objective 

function [76].. 
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Fig. 5 : A basic structure of their LSTM’s process [71] 

 

The fundamental structures of the LSTM’s process will be shown w.r.t. the Fig. 5 [71]. The H PSO CNN LSTM 

employs the CNLSTM algorithms for learning and classifying cardiac arrhythmias (CAs), while leveraging the 

Particle Swarm Optimization [PSO] to conduct a searching based algo within a swarms of particle. Every 

particle is characterized by a vital configurations of layer based architectures with the corresponding hyper-

parameter & the specific no. of epoch. Then, PSOs systematically searches for their particles which enables the 

CNNLSTM for achieving the satisfactory result in their classification’s tasks. Their globalized searches involves 

minimizing the objective based functions defined with a mathematical model which corresponds to their 

categorical cross-entropy [CE]. Then, the PSOs are responsible for identifying the optimal architecture within 

the population, ensuring optimal performance for the CNN-LSTM [76]. 

 

The CE value is computed using the neural network optimizers & are considered only with their classification 

involving a minimum of three different classes, as observed in the MIT-BIH Arrhythmia Database (MITDB) 

utilized in the proposed research. Then, H PSO CNN LSTM initiates with the primary steps, the Multi-Layered 

Architecture [MLA’s], involving the initializations for the populations with N no. of particle, every residing in a 

four-dimensional spaces. The dimension correspond to the no. of Convolutional layer, Pooling layer, Full 

Connecting (FC) layer, and the no. of epochs. Configuration of hyperparameters for each layer type is 

established, and an adaptation process transforms the initial population for CNN-LSTM comprehension. Each 

dimension stores distinct integer values, introducing diversities for their depths of their layer based 

architectures, with their fourth dimension determining the appropriate number of training epochs for the CNN-

LSTM configuration. The CNN-LSTM, utilizing trained CA’s from the MITDB’s [Train DS] & the 

configurations of every particle, commences training. Their neural network calculates the corresponding CE for 

each particle, storing this value as the localized best [pbest_i], utilized by the PSOs in their optimized processes. 

Their iterative processes continues till their completion of training for the entire starting populations. The 

samples of ECG signals is shown in the Fig. 6 [75]. 

 

 
Fig. 6 : Samples of ECG signals [75]. 

 

Comparative Studie Carried out  

The classification of various cardiac arrhythmias (CAs) has been addressed through diverse algorithm, ranged 

from the classical classifying technique till the implementation of hybridized computation based model within 

the field of AI-ML-DL. The Table  No. 1 provides an overview of relevant studies conducted over the past 5 
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years in this domain. Specifically, Table 1 details the year of each study, the utilized database(s), the number of 

CA classes, data balance status, dataset size, employed algorithm(s), achieved accuracy, and whether the 

proposed methods autonomously obtained the layered architecture. While some works in Table 7 report slightly 

higher performance than our approach, it becomes apparent that these variations can be attributed to factors such 

as balanced data, different data dimensions, or the use of a distinct classifier like DLA rather than CNN-LSTM. 

The distinctiveness and novelty of H-PSO-CNN-LSTM lie in their abilities for the construction & he optimizing 

for a perfect layered architectures starting from the pre-defined populations of particle. These distinctive 

capacities are being automated, a feature lacking in the other models presented in Table 1, where the architecture 

was traditionally defined, often through trial-and-error methods [76]. 

 

References  Database Method  Accuracy 

[10] MITDB RNN-LSTM 80.25 % 

[20] MITDB MLP 83.45 % 

[30] MITDB MLP-PSO 86.45  % 

[40] MITDB CNN 89.88 % 

[50] MITDB BaROA-CNN 92.12 % 

[60] MITDB CNN 94.22 % 

[70] MITDB CNN 96.28 % 

Proposed MITDB H-PSO-CNN-LSTM 99.01% 

Table 1 : Comparitive study of the proposed works with the work done by other researchers 

 

Conclusive Remarks 
In conclusion, the research on the Classification of Arrhythmia Diseases using the Hybrid Novel Model, 

incorporating Convolutional Neural Networks (CNNs) and Longer Shorter Termed Memories [LSTM] with the 

Particle Swarm’s Optimizations [PSO] Algorithm, has demonstrated promising results. The utilization of the 

PSO algorithm for optimizing hyperparameters in the CNN architecture proved effective, leading to improved 

accuracy and reduced categorical cross-entropy error in the classification of five classes of cardiac arrhythmias. 

The proposed model not only exhibited reliability but also introduced an innovative approach by automating the 

selection of hyperparameters, eliminating the need for manual intervention. This research contributes to the 

advancement of automated arrhythmia classification systems, showcasing the potential of hybrid models in 

enhancing diagnostic accuracy in the realm of cardiovascular health.  

 

Then, H PSO CNN LSTM models emerges as a effective hybridized solution for autonomously determining the 

layer based architectures, associated hyperparameters, & the no. of epoch in their classification of cardiac 

arrhythmias (CAs). Demonstrating commendable performance, this hybrid model streamlines the search 

process, a task conventionally conducted through method, viz., sensitivity based analysis, exhaustive type of 

searches or the heuristic type f strategic developments. Notably, these traditional approaches often entail 

prolonged seek times and, in certain instances, yield suboptimal performance. In contrast, the automatic strategy 

offered by H-PSO-CNN-LSTM enables the identification of a suitable configuration for the layer architecture 

and corresponding epochs, resulting in satisfactory performance within a significantly reduced timeframe 

compared to traditional methods. 

 

The computational model H-PSO-CNN-LSTM autonomously derives a layer based architectures using the 

corresponding hyper-parameters, yielding good result even w/o balanced datas. To enhance the model’s 

performance in the future, it is suggested to broaden the population of layer architectures and potentially 

incorporate additional hyperparameters within the dimension spaces of their Particle Swarm Optimization 

(PSO). H-PSO-CNN-LSTM, characterized by its simplicity, effectiveness, and versatility, extends beyond 

medical applications, offering a valuable tool for various classification tasks. While initially designed for time 

series classification, the adaptability of CNN-LSTM to two-dimensional spaces allows for potential 

modifications to achieve similar success in diverse problem domains. Currently confined to a 4-D spaces within 

the PSOs populations, further iterations of the model could explore an expanded dimensionality by integrating 

additional hyperparameters for optimization. This approach holds promise for further fine-tuning and enhancing 

the model's capabilities. 
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