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Abstract 
Kidney tumors are a prevalent form of cancer that affects 75,000 individuals annually. Segmentation of kidney 

tumors is a critical step in accurate diagnosis, treatment planning, and evaluation of treatment outcomes. 

However, due to the complexity of the kidney structure and the variability of tumor shapes and sizes, 

segmentation remains a challenging task.  

(1) Background:  

With traditional machine learning algorithms require feature engineering, deep learning techniques such as 

CNNs can automatically learn features from the CT scan. However, training these models 6requires a large 

number of parameters, which can be time-consuming, and the inference time can also 

be high. Furthermore, CNN-based methods may struggle with small and irregularly shaped . 

(2) Method: Our approach, called DFS (Distributed Fusion Segmentation), combines both CT scan and clinical 

data modalities in a distributed fusion model. The DFS model consists of two main modules: the CT-based 

segmentation module and the clinical data-based segmentation module.  

The CT-based module uses a deep convolutional neural network (CNN) to segment kidney tumor regions from 

CT scans, while the clinical data- based module uses various clinical data modalities, including patient age, 

gender, tumor location, and histology, to classify the kidney risk during its progression. The two modules then 

undergo a distributed fusion process that combines the segmented regions from both modules to produce a final 

segmentation mask.  

(3) Results: The DFS model was trained and tested on a large dataset of CT scans and clinical data from kidney 

tumor patients, and it achieved state-of-the-art performance in tumor segmentation.  

(4) Conclusion: Our results demonstrate that the integration of clinical data modalities into the segmentation 

process can significantly improve segmentation accuracy and reduce false positives. Moreover, the DFS model’s 

distributed fusion approach allows for a more comprehensive and accurate segmentation of kidney tumours, 

which can lead to improved diagnosis, 22treatment planning, and evaluation of treatment outcomes.  

 

KEYWORDS: Distributed Data Parallel; Kidney Tumour; Light Weight segmentation; GRU; Dense, Depth 

wise Separable, Stocastic Gradiant Descent, Distributed Fusion segmentation; CT scan ; clinical records;). 

Introduction   
The kidneys play a crucial role in the body’s fluid and solute balance, hormone secretion, and blood pressure 

regulation [1][2]. However, kidney diseases and cancer are significant health issues, with a lifetime risk of 

around 1 in 75 individuals. Renal carcinoma is a urinary illness that affects more than 400,000 people annually 

and is responsible for about 175,000 deaths. 

 

RCC is the third most prevalent type of cancer, and the incidence rate has grown by 2 percentage annually 

during the last two decades. The majority of kidney tumours [2] are malignant, with clear cell renal cell 

carcinoma [3] accounting for 80-90 Percentage of all kidney malignancies. Although the aetiology of kidney 

cancer [4] remains unknown, several risk factors have been identified. Currently, radical and partial 

nephrectomy are the only available treatments for kidney tumours. Early detection of kidney tumours [5] is 

difficult as they can grow for a lengthy period of time without manifesting any symptoms. 
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Detection of more than half of renal cell carcinoma patients may be due to coincidence. Numerous techniques 

are utilized in clinical procedures for the diagnosis and prognosis of kidney disease. Medical professionals 

employ tests to assess kidney risk factors [6] such as blood pressure, blood, urine, white blood cells, and 

smoking history. Imaging techniques such as CT scans, MRI, or PET scans enable physicians to detect kidney 

tumors or other abnormalities. In some cases, a biopsy may be recommended to obtain a sample of cells from a 

suspicious area of the kidneys. As shown in Fig. 1 tumor and internal structure of kidney organ is a complex 

structure. 

 

. 

Figure 1. Human kidney anato 

 

To assist experts medical imaging has become a valuable tool in detecting and di- agnosing various 

diseases, including cancer. Computed tomography (CT) [7] scans are  commonly used to visualize internal 

organs and tissues, including the kidneys. However, accurately identifying and segmenting tumors in CT 

images [7] can be challenging, as tumors can have irregular shapes and sizes. Automated segmentation 

techniques using deep learning have shown promising results in accurately identifying and delineating 

tumors in medical images. In particular, convolutional neural networks (CNNs) [8] have demonstrated 

excellent performance in image segmentation tasks. In this context, the aim of this study is to develop a novel 

approach for kidney tumor segmentation in CT images[7] using deep learning techniques. Our approach will 

leverage the power of CNNs[8] to accurately segment kidney tumors[7][8], which will have important 

implications for cancer diagnosis and treatment. In addition, the clinical data records [9] of Kidney disease 

patients can provide important information on their health history, including previous diagnoses, 

medications, laboratory results, and imaging studies [9]. These records can be used to  identify risk factors 

for kidney tumors, such as hypertension, diabetes, and smoking, which can guide screening and monitoring 

efforts. Furthermore, the progression of KD can also  provide insight into the prognosis of kidney tumors. 

As KD advances, it can cause structural changes in the kidneys, such as cysts or scarring, which can mimic 

the appearance of tumors on imaging studies [10][11]. 

 

Therefore, understanding the extent and severity of  KR can help prognosis of tumor and guide treatment 

decisions. To address kidney risk and tumor progression, a comprehensive approach that combines CT scan 

imaging [13] and  clinical data [12] is essential. Kidney risk (KR) is often asymptomatic, and the diagnosis 

is made through blood and/or urine testing. Early identification and increased awareness of KR are crucial, 

and a person with KR risk factors should undergo routine evaluation. To accurately predict kidney disease 

using the fewest possible indicators, machine learning  models such as deep neural networks can be used to 

analyze clinical data records. Similarly, for tumor segmentation, a distributed data parallel lightweight model 

can be used to effec tively segment the tumor from the CT scan images. This can aid in accurate diagnosis 

and prognosis of kidney tumors, leading to better treatment outcomes. 

 

By Combining CT Scan imaging and clinical data, clinicians can develop a comprehensive understanding of the 

patient’s condition, which can inform treatment decisions and improve patient outcomes.The reminder of this 

paper is organized as follows section 2 presents the related work to detect CT images and clinical records. 

Section 3 describes the materials and methods applied to fuse CT scan image dataset and clinical dataset using 

lightweight distributed data parallel algorithm. Section 4 shows the experiments and results. Lastly section 5 

presents the discussion and conclusions 
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Related Works 
This section provides a review of relevant literature on the use of machine learning and deep learning techniques 

for the early detection and classification of Kidney tumor and Kidney Risk ( KR) complications based on CT 

scans and clinical data modalities. The studies reviewed employed various methods, including support vector 

machines, random forests, convolutional neural networks, and recurrent neural networks, to identify early signs 

of complications. Clinical data and CT scan images are valuable sources of information in medical diagnosis, 

treatment planning, and research for Kidney disease. CT scans are widely used in clinical practice for the 

detection and characterization of various diseases, including cancer, cardiovascular diseases, and neurological 

disorders.  However, the interpretation of CT scan images can be challenging due to the complexity of 

anatomical structures and variations in image quality. Accurate and efficient analysis of CT scans requires 

advanced computational methods, such as image processing and machine  learning. 

 

2.1. Clinical Data Modality : The following studies provides a review of various studies in the field of machine 

learning applied to the prediction of Kidney Disease (KD). A significant number of research  studies have been 

conducted using different machine learning algorithms to build models  that aid in the prediction of various 

diseases and health-related issues. In the area of KD prediction, researchers have employed different techniques, 

including Deep Neural  Network (DNN)[14], Artificial Neural Network (ANN)[15], Logistic Regression 

(LR)[16], Random Forest (RF)[17], Naïve Bayes (NB)[18], and Decision Tree (DT)[19]. Several studies  have 

used various machine learning techniques, such as DNN, ANFIS, and neuro-fuzzy algorithms[20], to predict 

and diagnose different medical conditions. For example, Ge et al.  (2019) achieved high accuracy in predicting 

Parkinson’s disease[21] severity using DNN and biomedical voice measurements. Ayon and Islam (2019)[22] 

proposed a strategy for diagnosing diabetes with a high accuracy rate using DNN and the PIM Indian Diabetes  

dataset. Shafi et al. (2020) [23] developed a machine learning-based solution to kidney risk with renal disease 

using eGFRMORD using DNN and achieved a high accuracy rate with the MLP algorithm. Other studies 

focused on predicting chronic kidney disease (CKD) using various machine learning models, such as ANN, 

neuro-fuzzy algorithms, and DNN, with accuracy rates ranging from 84.41 Per to 100 Percentage. Overall, these 

studies demonstrate the potential of machine learning in diagnosing and predicting medical conditions. In 

summary, numerous studies have been conducted on KD prediction using  various AI techniques, including 

DNN, ANN, LR, RF, NB, and DT. Although DNN models have been used less frequently than other techniques 

in KD prediction, they have shown promise in achieving better results. 

 

2.2. Related Works on CT scan image for Kidney tumor segmentation: 

Semantic segmentation involves identifying and labeling regions in 3D imaging such as CT or MRI scans. This 

technique has various applications such as radiation therapy targeting, patient-specific surgical simulations, and 

disease diagnosis and prognosis. How- ever, clinical translation of these applications depends on automating the 

segmentation process.  

 

This has led to the rise of automatic semantic segmentation of biomedical imaging as a crucial research area. 

Despite unique challenges posed by the third dimension, recent studies have demonstrated impressive 

performance on the 3D segmentation of anatomical structures and lesions in cross-sectional imaging using deep 

learning methods. Deep neural networks (DNNs) dominate the design space for any given task, including 3D 

segmentation, and researchers are continually exploring this space for optimal performance.      However, the 

high computational cost of training DNNs means that most studies proposing new DNN architectures lack 

comprehensive benchmarking against the state-of-the-art.  

 

U-Net [24] and its 3D variants are some of the earliest proposed methods for DL-based medical image 

segmentation, and numerous modifications have been proposed since then. Isensee et al [26]. recently 

demonstrated state-of-the-art performance using only a U-Net [24] and a novel methodology to search a small 

space of hyperparameters and preprocessing procedures, termed nnU-Net[25]. Despite attempts to enhance it, 

nnU-Net demonstrated top performance in the recent KiTS19 challenge[27], one of the first grand challenges on 

3D segmentation held after nnU-Net[25] demonstrated its dominant performance and implementation was 

released. 

 

Materials and Methods: 
In this section three different models will be presented, a predictive model using the  clinical dataset [? ] to 

identify the kidney risk factors, a segmentation model using the CT scan images to segment kidney tumors. 

Then finally, a novel algorithm called Distributed fusion segmentation will be presented.  

3.1. Kidney Risk Classification Using GRU Model  

https://einj.net/index.php/INJ/article/view/446
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3.1.1. Data preprocessing 

The Deep learning and machine learning models require high-quality data to perform well, which is why the KD 

dataset [? ] must be pre-processed before use. This dataset contains 24 columns and 400 rows, with a binary 

output column indicating whether a patient has kidney disease (KD) or not. The KD dataset is incomplete in 

some respects, with certain variables missing values that must be completed using various techniques such as 

transforming continuous qualities into discrete features.  

 

During pre-processing, categorical values must be encoded into numerical values since most deep learning and 

machine learn- ing models only accept numerical input. One approach to achieve this is through categorical 

embedding [? ], where each category is represented as a vector of floating-point values. In the KD dataset, the 

variables [’age’,’bp’,’al’,’su’,’bgr’,’bu’,’sc’,’sod’,’pot’,’hemo’] are nu- merical and its statistical analysis is 

described in Table 1, while[’rbc’,’sg’,’pc’,’pcc’,’ba’,’pcv’,’wc’,’rc’,’htn’,’dm’,’cad’,’appet’,’pe’,’ane’] are 

categorical data values like yes / no.  

 

Fig. 2 provides a breakdown of the variables in the KD dataset. It is important to note that the KD dataset has 

certain limitations, such as the presence of erroneous reports and the possibility of missing values. These issues 

addressed during pre-processing to ensure that the dataset is appropriate for use in deep learning and machine 

learning models. 

 

 

count     mean            std            min         25 %     50%     75%   max 

 

id      400      199.5          115.6143      0          99.75     199.5   299.25  399 

 

age     391     51.48338    17.16971      2          42            55         64.5      90 

 

bp      38      76.46907     13.68364      50        70            80           80       180 

 

sg        353    1.017408      0.005717    1.005   1.01         1.02       1.02   1.025 

 

al        354    1.016949    1.352679       0            0            0             2           5 

 

su        351    0.450142    1.099191       0         0             0             0           5 

 

bgr      356    148.0365    79.28171       22           99        121         163      490 

 

bu        381    57.42572    50.50301      1.5          27         42           66        391 

 

sc        383    3.072454     5.741126      0.4         0.9        1.3          2.8       76 

 

sod       313   137.5288      10.40875     4.5         135       138         142     163 

 

pot      312   4.627244      3.193904      2.5        3.8         4.4          4.9       47 

 

hemo   348   12.52644     2.912587      3.1          10.3      12.65       15      17.8 

 

Table 1. Statistical Analysis of Numerical Values 
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Figure 2. Human kidney anatomy3.1.2. Kidney Risk Classification using clinical records 

 

To classify the kidney risk a custom deep learning model is proposed with Gated Recurrent layer units 

(GRU)[30]. The GRU[30] model for the KD dataset consists of multiple layers designed to process a sequence 

of input features and produce a binary classification output. The first layer is an input layer that takes in a 

sequence of features, where each feature has a dimension of 1. 

 

The input sequence has a shape of (sequencelength, numfeatures), where sequencelength is the length of the 

input sequence and numfeatures is the number of input features i.e. 25 features. The next layer is a GRU layer 

that takes in the input sequence and processes it using a set of GRU units. The output of the GRU layer has a 

shape of (sequencelength, numgru-units), where numgru-units is the number of GRU units.  

 

The GRU layer has learnable parameters that are trained during the model training process. The output of the 

GRU layer [30] is then fed into one or more fully connected layers, also known as dense layers. The fully 

connected layer(s) can have a varying number of neurons, which are also learnable parameters trained during the 

model training process. The output of the fully connected layer(s) has a shape of (numneurons,), where 

numneurons is the number of neurons in the fully connected layer(s).  

 

Finally, the output of the fully connected layer(s) is fed into an output layer that produces the final output. In the 

case of the KD dataset, which is a binary classification problem, the output layer consists of a single output 

neuron with a sigmoid activation function that produces a probability distribution over the two possible classes 

(normal or abnormal).  

 

The output layer has learnable parameters that are trained during the model training process. 

 

The GRU unit is represented as follows: Let xt be the input feature vector at time t, ht be the hidden state vector 

at time t, and yt be the output vector at time t. The GRU layer [30] unit has the listed gates as represented in 

equations (1) (2) (3) (4) and layer unit shown in Fig 3. 
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Figure 3. Human kidney anatomy 

 

Where is the sigmoid function, represents matrix multiplication W, U, Wr, Ur, Wz, Uz, b, br, bz are the 

learnable parameters of the model. In this model, the input sequence is a sequence of vectors, where each vector 

has a dimension of 25 (the number of features). The GRU layer takes in this sequence of vectors and processes it 

using a set of GRU units [30]. The output of the GRU layer is a sequence of hidden state vectors, where each 

hidden state vector has a dimension of numgruunits.A f tertheGRUlayer[30], the output sequenceis of edintoa  

fully conatenation of vector. 

 

3.2. RUSP-Net for Kidney Tumor Segmentation 

3.2.1. Data Preprocessing 

The KiTs challenge dataset [27] is a commonly utilized dataset for evaluating kidney tumor segmentation 

techniques. It includes high contrast CT scans of patientswho underwent partial or radical nephrectomy for one 

or more kidney tumors at the University of Minnesota Medical Center between 2010 and 2018 [27]. The dataset 

comprises scans with varying resolutions from 0.437 to 1.04 mm in plane resolution and slice thickness ranging 

from 0.5 mm to 5.0 mm.  

 

The dataset comes with ground-truth masks for healthy kidney tissue and tumors for each case as shown in Fig 

4, manually generated by medical students under experienced radiologists’ guidance, using only CT scan image 

axial projections. The dataset is provided in the standard NIFTI format [27]with shape (num slices, height, 

width) and has been utilized as a benchmark for various kidney tumor segmentation methods, including 

proposed model, which was assessed on this dataset. The use of this dataset is advantageous as it provides a 

diverse set of CT scans with varying resolutions and slice thicknesses, allowing for the evaluation of the 

robustness and generalization of segmentation techniques. Furthermore, the ground-truth masks were generated 

under expert guidance, ensuring the accuracy and reliability of the annotations. 
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Figure 4. An example of CT scan images from the KiTs19 Challenge which gives abdominal andground 

truth images [27] dataset 

 

Table 2. Summary of sequential model for Kidney risk classification using GRU Unit layer and dense 

Units 

 

Layer (type)                      Output Shape       Parameters 

 

GRU Unit                              32                            3360 

Droput                                    32                               0 

Dense                                      1                                33 

Total Parameters                                                     3393 

Trainable Parameters                                              3393 

No - Trainable Parameters                                       0 

 

3.2.2. RUSP-Net Model for Kidney tumor Segmentation  

The proposed RUSP-Net model is an extension of the classic UNet [26] model thatcombines an encoder-

decoder architecture with residual connections [31], spatial pyramid 

pooling module [32], and dilated convolutions [33]. The architecture of the proposed model . 

 

Figure 5. CT scan image segmentation using Residual UNet with pyramid and dilated convolutionsfor 

semantic segmentations with low trainable 

 
The encoder consists of a series of convolutional blocks that down sample the inputimage. Each block 

comprises two 3×3 convolutional layers followed by batch normalization 212 and a ReLU activation function, 

and a 2×2 max-pooling operation. Let X be the input image output of the encoder. 213and Henc(x) be the  

Then, the output feature maps of the i-th blockof the encoder, Hi(x), are computed described in equation (5). 

Hi(x) = relu(conv(Hi-1(x)) (5)where conv denotes the 3×3 convolution operation, relu denotes the ReLU [34] 

activation function, and Hi-1(x) denotes the output feature maps of the (i-1)-th block of the encoder. The 

decoder consists of a series of convolutional blocks that upsample the feature maps to the original 

resolution.  Each block comprises a 2×2 transposed convolutional layer followed by concatenation with 

the corresponding feature maps from the encoder and two 3×3 convolutional layers with batch 

normalization and a ReLU activation function. Let Hdec(x) be the output of the decoder. Then, the output 

feature maps of the i-th block of the Gi(x) = relu(conv(concat(Gi-1(x),Hi-1(x)))) in equation (6): (6) where 

concat denotes  decoder, Gi(x), arecomputed as shown the concatenation operation, conv denotes the 3×3 

convolution operation, relu denotes the ReLU [34] activation function, Gi-1(x) denotes the output feature maps 

of the (i-1)-th block of the decoder, and Hi-1(x) denotes the corresponding feature maps from the encoder. In 

addition to the skip connections, the proposed model also includes residual connections between the layers of 

the encoder and decoder. The residual connections allow for the model to learn more complex features and 

improve its overall performance. Let Ri(x) be the output of the residual connection between the i-th block of the 
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encoder and decoder. Then, the residual connections are calculated as shown in equation (7). Ri(x) = Hi(x) + 

Gi(x) (7) The proposed model also includes the use of a spatial pyramid pooling module, which allows for the 

model to learn features at multiple scales. The spatial pyramid pooling module is added to the final layer of the 

encoder, before the feature maps are passed to the decoder. The spatial pyramid pooling module comprises three 

parallel 3×3 convolutional layers with different dilation rates (1, 2, and 3), followed by concatenation. The 

output feature maps of the spatial pyramid pooling module are denoted by SPP(x). Finally, the proposed model 

includes the use of dilated convolutions, which allows for the model to have a larger receptive field without 

increasing the number of parameters. The dilated convolutions are used in the final layers of the decoder, where 

the feature maps are upsampled to the original resolution. Let Y be the output of the proposed model. Then, the 

final output feature maps are computed as shown in equation (8). Y = conv(relu(conv(concat(Ri(x), SPP(x)))) 

(8) where conv denotes the 3×3 convolution operation, relu denotes the ReLU activation function, concat 

denotes the concatenation operation, Ri(x) denotes the residual connection between the i-th block of the encoder 

and decoder, and SPP(x) denotes the output feature maps of the spatial pyramid pooling module. Overall, the 

proposed model improves upon the classic UNet [26] architecture by adding residual connections, a spatial 

pyramid pooling module, and dilated convolutions. To reduce the number of parameters in the model, pruning 

techniques can be applied to the convolutional layers in the contracting and expanding paths. The pruned model 

will have a smaller number of weights and can be more easily deployed on resource-constrained devices [35]. 

Overall, a lightweight pruned UNet model with depthwise separable convolution [35] can achieve high accuracy 

in kidney tumor segmentation while minimizing computation and memory requirements. 

 

3.3. Distributed Fusion Segmentation Model 

The Distributed deep learning model [36] designed to predict the presence of kidney tumors using both medical 

imaging data and clinical data. The model is split into two parts: a lightweight pruning depth-wise separable 

convolution model [35] for the imaging data, and a GRU model [30] for the clinical data. The proposed model is 

to improve the accuracy of kidney tumor detection by leveraging the complementary information provided by 

both imaging and clinical data. By training the model in a distributed manner, the computational workload can 

be divided among multiple nodes, making it possible to process large datasets efficiently. The proposed model 

Distributed Fusion Segmentation (DFS) shown in Fig 6 training process involves partitioning the data into 

multiple subsets, assigning each subset to a worker node, and training each node’s model replica on its assigned 

subset using stochastic gradient descent. The gradients computed by each worker node are averaged across all 

nodes to obtain a global gradient update, which is then used to synchronize the weights of each model replica. 

The model is trained iteratively until convergence, at which point the predictions of each model replica are 

aggregated to obtain the final prediction for each input. 

 

Figure 6. The proposed architecture of Distributed Fusion Segmentation (DFS) for Kidney tumor 

segmentation and its progression using CT scan image, clinical data records. 

 

 
 

The proposed algorithm shown in Fig 7 involves training separate models for seg- 271 mentation and feature 

extraction, and then fusing the results using a fusion model. The 272 algorithm uses stochastic gradient descent 

(SGD) [37] with weight averaging to train the 273 models in a distributed [36] manner. The final segmentation 

and probability map are ob- 274 tained by aggregating the predictions of each model replica. The postprocessing 

step is used 275 to improve the accuracy of the segmentation and probability map, and the visualization 276 step 

is used to aid in clinical decision making 
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Figure 7. Distributed Fusion Segmentation Algorithm for CT scan images consist of slices with ground 

truth segmentation and clinical records to classify kidney risk factors.

 
 

Results 
This section presents the experiment results of Clinical-GRU model, RUSP-Net CT scan image segmentation 

and the proposed model Distributed Fusion Segmentation (DFS) model for Kidney Tumor Segmentation and its 

progression. The model run with often the hyperparameters, though all had different network architectures. 

Results are discussed in the following current section. The Clinical-GRU classification model effectiveness on 

the KD dataset is demonstrated through several performance metrics, including the false positive rate (FPR), 

false negative rate (FNR), sensitivity, specificity, accuracy, F-score, and kappa value. To evaluate the 

classification performance of any classifier, the confusion matrix is essential. It is a 2x2 matrix that provides 

information about the actual and predicted classifications. The confusion matrix includes four elements: true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). These four elements are used 

to calculate various classification measures for the proposed model. The described measurements are calculated 

for the clinical data described in Section 3. 

 

Table 3. Performance of clinical records by applying proposed GRU-deep learning model 

Performance 

Measures)       FPR  FNR Sensitivity Specificity Accuracy F-Score Kappa 

 

GRU 

Unit  

Sequential        6.660  4.00     96.00         93.33        97.888     97.00      90.01 

Model           

 

    Table 3 provides the obtained FS results obtained by the proposed deep learning model. Fig 8 shows the 

gradual increasing of the classifier accuracy from 85.00 to 97.88 with number of epochs.is shown in Fig 5 and it 

is presented in the current section. 

 

 
Figure 8. Model Loss and Accuracy of Kidney Risk classification using proposed sequential deep learning 

model which is described in Section 3. 
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The SHAP[38] is an additive feature attribution method that provides an explanation of the tree ensemble’s [39] 

over impact in the form of particular feature contribution and relatively consistent with human intuition. SHAP 

[38] plot can give physicians an intuitive understanding of key feature in the model and it visually displays the 

top risk factors Figure 9. Hemoglobin in gms (hemo) , Serum Creatinine in mgs/dl (sc), Diabetes Mellitus(dm), 

Hypertension(htn), Sugar(su) were associated with higher risk probability of adverse outcomes in patients with 

kidney disease. 

 

Figure 9. High Risk factors of kidney disease for prognosis. 

 
 

The proposed RUSP-Net network is trained with the kidney and kidney tumor region as outputs. The weight 

updates performed with Adam optimizer [40] using a learning rate of 0.001 and reduced after ten epochs to 10 

percentages if there are no improvements in the validation loss. The batch size is chosen to 16, and the total 

epochs are set to 100. The training was based on Keras with a Tensor Flow backend as a Google Colab deep 

learning framework enabled with a NVidia GPU such as T4(15 GB memory) with a high-memory VM. 

 

To evaluate the proposed RUSP-Net model’s performance, the standard Dice score is considered an evaluation 

metric. We were provided with 35865 and 10158 images as a training and validation images for our 

experimentation. Table 4 shows the segmentation results of the proposed RUSP-Net model for training and 

validation images. From the table, it is observed that, during training, the proposed method achieves the training 

accuracy of 0.98 shown in Figure 10 for the tumor region. Similarly, our network computational resource usage 

is shown in Table 4 and 5. From the experimental results, we understand the power of pruning, skip connections 

residual units and dilated sparsity pyramid pooling in the proposed network. Since adding network pruning to 

the proposed architecture and skip connections, the total number of flops and parameters is two times smaller 

than the typical UNet architecture. 

 

Table 4. Comparison of results between RUSP Net and other models 

(Model)         Training Loss     Training Accuracy          Mean IoU 

U-Net               0.5601                    97.87                             0.435 

U-Net  

(Depthwise +     0.4439                   93.62                             0.362 

BN)                     

RUSP-Net          0.066                    98.43                             0.428 

(Proposed 

Model) 

 

 

Table 5. Calculating the Number of parameters and floating-point operations for the proposed model 

 

Model)               Number of Parameters              Number of Flops 

Classical UNet           31,031,745                          27352612872.00 
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RSUP – Net 

 (Proposed Model)      28,031,745                         24095637504.00 

 

 
Figure 10. Kidney tumor segmentation loss and accuracy using CT scan images by applying the proposed 

model which is described in Section 3 

 

To evaluate the proposed algorithm Distributed Fusion Segmentation (DFS) we applied on 10000 records with 

which consists of CT scan images with two classes and clinical features with 2 classes. To apply our proposed 

DFS the data is partitioned into P subsets to distribute the computation across multiple worker nodes, which will 

helped to reduce the overall time needed to process the data. In our implementation data is divided into 4 subsets 

of 2500 records each. Eash subset is balanced by applying overfitting [41] algorithms. The weights of the 

models are then synchronized across all workers using all reduce operation. Each worker node involved loading 

the data running the image segmentation and clinical feature extraction models. For the single worker scenario, 

the entire dataset of 10,000 records would need to be loaded into memory on the single worker node, requiring a 

total of 65 GB of memory. 

 

Table 6. Comparison of single worker and four workers Computational inference time for DFS which 

includes Clinical-GPU and RUSP Net and individual model 

 

                                Number of Records              Workers 

Iterations                  Inference Time 

Clinical- GPU              10,000                          Single Worker 

100                               2.18 Hours 

RUSP-Net                      10,000                        Single Worker 

100                               13.78 Hours 

DFS                                10,000                         Four Workers 

100                                1.74 hours 

 

The total computation time shown in Table 6, is 10,000 * 0.1 seconds per record * 100 iterations required 27.78 

hours. As we applied DFS on 4 workers then total computation inference time is 1.74 hours which shows the 

fast inference time of our proposed algorithm and results are also descent with 98.001 accuracy Figure 11. And 

also fusion of tumor segmentation and clinical feature extraction also improves the performance of tumor 

segmentation and progression. 

 

 
Figure 11. Result of Distributed Fusion Segmentation ( DFS ) for Kidney tumor Segmentation and 

Kidney Risk Classification 

 

Conclusion and Future Work  
In this model, we proposed a Distributed Fusion Segmentation (DFS) approach for 338 kidney tumor 
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segmentation and clinical data analysis. The model partitions the data and 339 distributes it to worker nodes for 

training local models using stochastic gradient descent. 340 The models are synchronized using an all-reduce 

operation to obtain a global gradient 341 update. The final prediction is obtained by aggregating the predictions 

of each model 342 replica using a weighted averaging scheme. This model has the potential to improve 343 the 

accuracy and efficiency of kidney tumor segmentation and clinical data analysis, as 344 well as enable the 

analysis of large-scale healthcare datasets. There are several avenues 345 for future work that can improve the 

performance and applicability of this distributed 346 machine learning approach for healthcare applications. 

One potential area of focus is 347 developing more efficient data partitioning strategies that can improve the 

training time 348 and reduce communication overhead between worker nodes. Additionally, optimizing the 349 

hyperparameters of the model, such as learning rate, batch size, and regularization, can 350 further improve the 

accuracy and efficiency of the model. Another area of future work is 351 investigating the use of transfer 

learning and model compression techniques to improve 352 the generalization and scalability of the model. 

Finally, the model can be extended to 353 other healthcare applications, such as disease diagnosis and drug 

discovery, to improve the 354 overall quality and efficiency of healthcare. 
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