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Abstract 
Parkinson's disease (PD) is a progressive and degenerative neurological disorder that primarily disrupts the 

brain's motor functions, leading to symptoms like bradykinesia, stiffness, balance problems, and resting tremors. 

The intricate nature of PD, which often resembles other neurological conditions and involves subtle structural 

brain changes, complicates accurate diagnosis, resulting in a 25% diagnostic error rate. To address this 

challenge, the research community has employed various machine learning techniques using manually crafted 

features for diagnosis. This study introduces an innovative computer-aided diagnostic approach for PD based on 

a self-adaptive convolutional neural network (SCNN), a potent model for automatically extracting essential 

problem features. The Parkinson's Progression Markers Initiative (PPMI) provided the dataset used in this 

investigation, which includes a variety of datasets such as T2-weighted MRI scans from both PD individuals as 

well as healthy controls (HC). In particular, mid-slice MRI data is gathered and registered in order to be aligned. 

To pinpoint the region of interest in the midbrain, a 33 × 33-sized window is employed, as PD primarily affects 

the substantia nigra within the midbrain. Comprehensive experiments have been conducted to validate the 

reliability of the SCNN approach. Using common evaluation measures like area under the curve, specificity, 

sensitivity, and accuracy, the suggested method's performance is evaluated. Notably, the evaluation findings 

show that in terms of diagnostic precision, the SCNN performs better than other machine learning techniques 

 

Key words: Parkinson's disease, SCNN, MRI analysis, CAD diagnosis, Substantia nigra and  

Neurodegenerative disorders. 

Introduction   
Parkinson's disease is a debilitating neurological ailment that substantially reduces an individual's capacity to 

execute motor and non-motor functions. The first comprehensive account of Shaking Palsy was given in James 

Parkinson's seminal work, "An Essay on the Shaking Palsy," which came out in 1817 [1]. The disease is caused 

by dopaminergic neurons, which are found in the substantia nigra, an important sub-cortical area of the brain 

that regulates movement. Parkinson's disease can present with a variety of early symptoms, including tremors, 

reduced handwriting, olfactory impairment, sleep disturbances, mobility issues, constipation, a progressive loss 

of speech volume, an expression that is uncharacteristically animated, episodes of dizziness or fainting, and a 

propensity to bend or hunch over. Early signs of a nervous system issue are frequently indicated by these 

symptoms. 

 

The accumulation of misfolded protein molecules within cells is the main cause of Parkinson's disease, which 

ultimately results in neurodegeneration. Even if a number of drugs, including dopamine agonists, MAO-B 

inhibitors, and levodopa (L-DOPA) [2], are used as first treatments, their efficacy gradually wanes. In addition, 

patients frequently encounter unwanted side effects as dosages rise in order to maintain efficacy. It is important 

to stress that although there is no known cure for Parkinson's disease, medication can help regulate the disease's 

course and reduce symptoms. Sadly, there is currently no proven treatment for this illness, which emphasizes 

how critical it is to concentrate on early discovery and intervention. Parkinson's disease is the second most 

prevalent neurological disorder globally, affecting about 10 million people. In addition, individuals under the 

age of 50 may be affected by this condition, and it's significant to highlight that men get diagnosed with 

Parkinson's disease at a higher incidence than women. 

 

The deterioration of gait, or the rhythmic pattern of movements involved in walking, is one of the most 

noticeable motor abnormalities associated with Parkinson's disease. One essential aspect of walking is the gait 
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cycle, which consists of a sequence of synchronized physical movements. When evaluating a patient's gait, 

medical practitioners frequently look at criteria including shorter strides, slower walking during free ambulation, 

and changes in cadence rate [3]. These changes are suggestive of Parkinson's disease. Early identification of 

Parkinson's disease is essential, given the limits of current treatments that only offer transient symptom 

alleviation. The illness advances more quickly in this early stage, so it's critical to find new tools or markers for 

an early diagnosis. Early detection of Parkinson's disease would give rise to opportunities for more efficient 

management and could perhaps impede the disease's advancement. Hence the major contribution of the 

proposed work is, 

 

• This article presents the use of a (CNN) for the diagnosis of Parkinson's disease. CNNs are known for 

excellent feature extraction and pattern recognition from complex data, making them a novel PD 

diagnosis tool. Using a CNN model, researchers can use deep learning to effectively identify PD from 

MRI scans, outperforming typical machine learning methods. 

• Another benefit of the proposed computer-aided diagnostic system is better diagnostic accuracy. CNN 

diagnoses PD better than naive Bayes, decision trees, support vector machines, and artificial neural 

networks, according to the study. The research uses CNNs and the Parkinson's Progression Markers 

Initiative (PPMI) dataset to improve PD diagnosis accuracy by 25%. This accuracy gain is critical for 

early Parkinson's disease intervention and better management. 

 

Related Works 
The implementation of various (ML) and (DL) approaches has led to considerable breakthroughs in the 

classification of Parkinson's disease (PD) in recent studies. Fully automated and semi-automated methods are 

among these techniques: 

 

Analysis of Gait Employing DL [4] suggests that a unique intelligent model was presented by analyzing gait 

data with DL methods. A 1D convolutional network was used to handle the data from 18-ID signals, which 

measure  (VGRF) and are derived from foot sensors. The model not only detects Parkinson's disease but also 

predicts its severity, achieving an impressive accuracy of 98.7%. Vowel-Based PD Detection [5] an intelligent 

system was developed for PD detection using vowel features. The minimum average maximum (MAMa) tree 

and singular value decomposition (SVD) were used for the extraction of characteristics, and picking feature 

approaches were used to choose 50 unique features. A K-nearest neighbors (KNN) algorithm was used for 

classification, and 92% accuracy was attained. 

 

CNN-Based Neuroimaging Classification [6] a convolutional neural network (CNN)-based model was presented 

for classifying PD and healthy controls (HC) using neuromelanin-sensitive magnetic resonance imaging (NMS-

MRI). With 25 PD and 35 HC among the 45 individuals in the sample, the model's higher testing accuracy was 

80%. A revolutionary intelligent system that encompassed every region of the brain and gathered feature vectors 

from each is provided by the Whole-Brain Network Approach [7]. Support vector machines were utilized for 

classification, and random forests were used for feature selection. With 169 HC and 374 PD participants in 

the(PPMI) data set, this model demonstrated a 93% accuracy rate throughout training and testing. 

 

For Voice-Based PD, MLFNN Diagnosis [8] refers to a machine learning-based method of PD diagnosis that 

makes use of a (MLFNN). The data came from the Oxford Parkinson's datasets and comprised speech measures 

from 31 individuals (10 normal controls and 21 Parkinson disease patients). The model demonstrated 

effectiveness with a level of sensitivity of 83.3%, specific of 63.6%, and overall accuracy of 80%. 

 

Swarm Optimization for Feature Extraction [9] where a dataset from the UCI repository was used, and swarm 

optimization was applied for feature extraction. Classification was performed using naive Bayes, resulting in an 

impressive accuracy of 97.5%. Non-Motor Features in PD Diagnosis [10] examined the use of non-motor 

characteristics in PD diagnosis, such as  (REM), olfactory loss, and sleep behavior disorder. These non-motor 

characteristics were paired with additional markers such measures of CSF fluid and dopaminergic imaging. 

Boosted tree, SVM, random forests, and Bayes were among the several classification methods used; SVM 

yielded an accuracy of 96.4%. Considering non-motor symptoms alongside motor symptoms enhances 

diagnostic accuracy, even in the early stages of PD, and aids in differentiation from other neurological disorders. 

In addition to advancing PD diagnosis, these studies demonstrate the potential for applying ML and DL 

techniques to differentiate PD from other neurological conditions, providing valuable insights for early and 

accurate diagnosis and tailored treatment approaches. 

 

Proposed Model Taxonomy 
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Pre-processing stage 

T The original DICOM format was used to store the magnetic resonance (MR) images. Then, they were 

transformed into JPEG format by use of the freely available DICOM to JPEG application. There were 45 slices 

in the data set for each participant; however, only slice number 22 was selected for each individual due to its 

precise depiction of the substantia nigra, an important mid-brain region that regulates movement and motor 

control. The substantia nigra produces dopamine, which is a signaling chemical that communicates with the 

brain and other body parts regarding movement and coordination. 

 

All of the slice number 22 photos were stacked together to provide a coherent dataset. After that, intensity-based 

image registration was used to align these photos, a process made possible by the OpenCV framework. Aligning 

brain scans or pertinent regions taken from Parkinson's disease patients is the technique of image registration. 

Through the establishment of a regular spatial relationship between the images, this alignment guarantees 

consistency and uniformity throughout the study. The process of image registration removes variations resulting 

from variances in patient location or scanning techniques by bringing the images into a standard coordinate 

system. Removing any undesired or irrelevant data that would cause the model to learn redundant and needless 

features was the main goal of the image registration process. 

 

Using an area of 33 × 33 pixels, the mid-brain slice was isolated using the freehand (ROI) method in order to 

produce an accurate image of the substantia nigra. Given that various patients may have differing sizes of this 

particular organ, the freehand ROI approach was chosen. The precise control over cropping the organ's specific 

position was accomplished by using the freehand ROI technique. The final input for the convolutional neural 

network (CNN) model was this processed image.  

 

Self-adapting Convolution Neural Network Model 

CNN architecture has found application in various image-related tasks, including image classification and 

recognition, where it often outperforms other models. For instance, in a recent study [8], a deep CNN-based 

system for diagnosing COVID-19 from cough sounds was proposed, and it was shown to outperform alternative 

models. Another article [9] suggested the use of CNN for the classification of lung diseases, particularly on 

chest X-ray images, resulting in improved classification accuracy compared to previous techniques. The layers 

of convolution, function activation, map features, maximum pooling, and normalization are the fundamental 

components of the CNN architecture. 

 

The initial convolutional layer, a crucial part of the CNN structure, takes input data and processes local spatial 

information using convolutional kernels, followed by an activation function that reports activation values. 

Multiple convolutional layers can be stacked to create a feature hierarchy, progressively extracting and learning 

more intricate features. The number of convolutional filters used determines the quantity of feature maps 

generated. For every pixel in the feature map, the activation function represents spatial neighbourhood 

activation. A maximum pooling layer thereby lowers the dimensionality of the input, minimizes the danger of 

overfitting, and uses less computational power. To build a hierarchical design, the max pooling layer's output 

can be passed into an additional convolutional layer. The dense layer connects every neuron to the final feature 

maps, and for classification purposes, the softmax function serves as the activation function. These components 

collectively form the fundamental building blocks of the CNN model. 

 

Initiating weight values 

Deep learning heavily relies on appropriate weight initialization, a crucial factor that accelerates convergence 

and stabilizes the loss function, even after numerous iterations. In this study, we employ the Xavier initializer, 

designed to maintain specified levels of backpropagation gradient and activation variance [10]. 

 

              (1) 

 

 

In Equation (1), the utilization of Unormal as a normal distribution, wei as the input layer weight, and w+1 as 

the output layer weight is illustrated.  

 

Kernel Convolution stage 

When convolution is applied to an image, it initiates the generation of feature maps, with each kernel producing 

its set of features. The calculation of the feature map F can be achieved using the formula provided,  
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                (2) 

 

where Nc represents the input channel, and Mk signifies the kernel. 

 

Activation function 

The system becomes non-linear during the activation function phase. Even though a number of mechanisms for 

activation have been suggested and are still being studied, each has a unique set of restrictions and might not be 

appropriate in all situations. For instance, the sigmoid function exhibits the vanishing gradient problem, while 

ReLU, despite the risk of dead neurons, often yields superior results compared to sigmoid and hyperbolic 

tangent functions. ReLU's tendency to disregard gradients below zero is another concern. To address these 

issues, the enhanced LeakyReLU incorporates a negative gradient parameter α, which can take any real value 

between 0 and 1. 

 

             (3) 

            (4) 

 

Pooling layer 

Pooling operations serve to reduce the dimensionality of feature maps and filter out minor variations in 

illumination and intensity. These days, the most popular pooling strategies are max, min, and typical pooling. 

Within the pooling kernel, max pooling determines the maximum value, min pooling selects the smallest value, 

and average pooling determines the mean value. The average impact of all the features is returned via pooling, 

which calculates the mean of each characteristic in the pooling kernel. 

 

Fully connected stage with regulation 

The primary goal of normalizing is to prevent the model from being overfit. Many techniques, including widely 

used ones like batch normalizing, global average gathering, global max pooling, and L1 and L2 regularization, 

can be used to avoid overfitting. Another useful strategy is called Dropout, which ensures that each person 

contributes to the final product by arbitrarily activating or deactivating neurons to facilitate successful learning. 

We use dropout with a variable p in this study, where p can take on any real number between 0 and 1. The 

operation of Dropout can be understood through the formula: 

 

          (5) 

 

Here, yk represents the likely result of unit k, M denotes the set of all pruned networks, y^M signifies the output 

of unit M, and Pr() represents the probability function. 

 

The fully connected layers come after the convolutional layers. In these layers, every pixel in the image is 

treated as a neuron and communicates with every other neuron in the layer. The classification task is handled by 

a classifier in this last layer; Softmax is a popular classification in deep neural networks. One can define 

Softmax by applying Bayes' theorem. 

 

          (6) 

 

Here, Ck signifies the target class for identification, and Cj represents classes for j=1,2,3,...,n. Its exponential 

form is as follows: 

  

               (7) 

 

Furthermore, evaluating the degree of alignment between the predicted values and the given ground truth label 

also heavily relies on the loss function. Although the loss function can be customized for a given task, 

categorical cross-entropy is a commonly used cost function in classification tasks, and it is formalized as 

follows: 

             (8) 
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Here, c represents the actual target class, and c^{(a,b)} is the class that Equation predicts(8). 

 

Training the proposed model 

Upon receiving MRI data as input, our proposed model undertakes the task of classifying the data into PD or 

HC categories. Our approach makes use of a deeper CNN network with compact 3 x 3 convolutional kernels. 

Opting for smaller convolutional kernels, which entail fewer parameters to estimate, facilitates the model's 

ability to learn and generalize effectively, even when trained on limited datasets. In contrast, larger 

convolutional kernels necessitate more abundant training data, involve a higher number of parameter estimates, 

and exhibit lower generalizability. To enhance model performance, we incorporate the advanced LeakyReLU 

activation function after each convolutional kernel. LeakyReLU modifies negative gradients during 

backpropagation, which successfully tackles problems such as the dying ReLU problem. Furthermore, each 

LeakyReLU layer is preceded by batch normalization, which speeds up the network's training process. Our 

network is designed to handle 33 × 33 input patches. 

 

First, the architecture consists of three convolutional layers. Next, there is a max pooling layer that has a 2 × 2 

stride and a 3 × 3 kernel. The output, referred to as feature maps, from the initial max pooling layer consists of 

64 channels and measures 16 × 16 in dimensions. By adding the max pooling layer, the total dimensionality as 

well as the amount of learnable parameters are decreased. The following three convolutional layers receive the 

feature output map from the first max pooling layer. The output feature maps generated by the sixth convolution 

layer, with a size of 128 × 16 × 16, are processed by the second max pooling layer, which has a 2 × 2 stride and 

a 3 × 3 kernel. The output feature maps that are produced from this layer of pooling have size of 128 × 7 × 7. 

 

Two fully connected (FC) layers are involved in the processing that follows. There are 512 neurons in the first 

FC layer and 256 neurons in the second layer. To mitigate the risk of network overfitting, we have introduced 

dropout with a 0.1 value in both FC layers, representing an advanced regularization technique. At the network's 

conclusion, we employ a softmax layer to determine classification probabilities. A visual representation of our 

proposed model can be found in Figure 1, and detailed information regarding the model's architecture and 

parameters is presented. In Table 1, " The total amount of input channel and the feature map's or patch size's 

dimensions are shown in the "Inputs" column. 

 

Table 1: Configuration of the SCNN architecture 

 

Layers Category Filter  Stride size Filters (#) 
Units of fully 

connected layer 
Input 

Layer 1 Convolution 3 × 3 1 × 1 64 - 33 × 33 

Layer 2 Convolution 3 × 3 1 × 1 64 - 64 × 33 × 33 

Layer 3 Convolution 3 × 3 1 × 1 64 - 64 × 33 × 33 

Layer 4 MaxPooling 3 × 3 2 × 2 - - 64 × 33 × 33 

Layer 5 Convolution 3 × 3 1 × 1 128 - 64 × 16 × 16 

Layer 6 Convolution 3 × 3 1 × 1 128 - 128 × 16 × 16 

Layer 7 Convolution 3 × 3 1 × 1 128 - 128 × 16 × 16 

Layer 8 MaxPooling 3 × 3 2 × 2 - - 128 × 16 × 16 

Layer 9 FullyConnected - - - 512 6272 

Layer 10 FullyConnected - - - 256 512 

Layer 11 FullyConnected - - - 2 256 
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Figure 1: Proposed self-adaptive CNN model 

 

Empirical Results 

Utilized PPMI dataset for the study. PPMI dataset is a comprehensive and longitudinal resource designed for 

advancing research on Parkinson's disease (PD). It encompasses clinical assessments, neuroimaging data 

(including MRI and DaTscan), genetic information, biospecimens, and cognitive assessments collected from 

both early-stage PD patients and healthy control subjects across multiple international clinical sites. Finding 

biomarkers that can help diagnose Parkinson's disease (PD), monitor the disease's course, and maybe direct the 

development of new treatments is the main goal of PPMI. This open-access dataset serves as a crucial 

foundation for researchers worldwide, facilitating collaborative efforts to unravel the complexities of PD and 

improve our understanding of this neurodegenerative disorder. 

 

Our CNN-DL classifier demonstrated remarkable performance in the context of Parkinson's disease (PD) 

classification. During cross-validation, it exhibited an impressive accuracy rate of 83.7% with an Area Under the 

Receiver Operating Characteristic (AU-ROC) score of 0.90. When tested on an independent dataset, the 

classifier maintained a high level of accuracy, achieving 80% with an AU-ROC score of 0.91. In comparison, 

traditional classifiers like CR-ML struggled, yielding a cross-validation accuracy of only 52.7% and a test 

accuracy of 56.5%, along with lower AU-ROC scores. The RA-ML classifier fared better with an 81% cross-

validation accuracy. Figure 2 graphically illustrates the stark contrast in performance between the CNN-DL 

algorithm and the other two traditional methods, making it evident that deep learning approaches like CNN-DL 

are particularly well-suited for complex classification tasks like distinguishing PD from controls. 

 

Detailed results, including accuracy, sensitivity, and specificity metrics, are provided in Table 2, offering a 

comprehensive view of the classifier's performance. Notably, radiomics-based features played a crucial role in 

achieving accurate classifications. Features such as run length, non-uniformity, surface-volume ratio, and grey 

level emphasis emerged as the most influential factors in distinguishing PD cases, as highlighted in Figure 3. 

The Class Activation Maps derived from CNNs (depicted in Figure 4) provide further insights into the neural 

activity patterns of different patients. Interestingly, a common trend emerged, with activations predominantly 

concentrated in the left substantia nigra pars compacta (SNc) across most patients. This observation was 

quantitatively analyzed and is presented in Fig. 5, revealing a statistically significant difference in the intensity 

of activations between the left and right SNc regions, with the left side showing a more pronounced difference 

(p-value = 0.09). This finding has intriguing implications for our understanding of PD pathology. 

 

Furthermore, healthy control subjects (HCs) exhibited similar patterns of activation, with more pronounced left-

side dominance. While this difference did not reach statistical significance (p-value = 0.35), it still suggests that 

neural activation patterns in the SNc may hold valuable insights into PD diagnosis. In summary, our PD 
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classification model, especially when leveraging deep learning techniques like CNN-DL, demonstrated 

exceptional accuracy and robustness. In cross-validation, it achieved an accuracy rate of 81.8%, which further 

improved to 85.7% during testing, as shown in Table 2. Figure 6 supplements these findings with visual 

representations of ROC curves for both cross-validation and testing, along with sample heatmaps for two 

distinct subjects. This study underscores the potential of advanced machine learning approaches in enhancing 

our ability to diagnose and understand PD. 

 

Figure 2: ROC curves for three methods used in (a) during cross-validation and (b) in testing 

 
Figure 3: Feature vs F-score 

 

The findings of this study highlight the significant potential of advanced machine learning, particularly 

convolutional neural networks with deep learning (CNN-DL), in the classification of Parkinson's disease (PD). 

The performance of the CNN-DL classifier, with a cross-validation accuracy of 83.7% and a test accuracy of 

80%, underscores its ability to effectively discriminate between PD patients and healthy controls. These results 
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are particularly promising in the context of a complex and multifaceted disorder like PD, where early and 

accurate diagnosis is crucial for timely intervention. In comparison, traditional classifiers, such as CR-ML and 

RA-ML, fell short in terms of accuracy and robustness. These results emphasize the superiority of deep learning 

techniques, which can automatically learn relevant features from the data, over handcrafted feature-based 

methods. The ROC curves presented in Figure 2 vividly illustrate the disparity in performance between the 

CNN-DL algorithm and traditional approaches, further affirming the potential of deep learning in PD diagnosis. 

Radiomics-based features emerged as key contributors to the success of the CNN-DL classifier. Features like 

run length, non-uniformity, surface-volume ratio, and grey level emphasis played pivotal roles in distinguishing 

PD cases. This underscores the importance of leveraging advanced feature extraction methods in combination 

with deep learning models to harness the full discriminatory power of medical imaging data. Figure 3 provides a 

visual representation of the significance of these radiomics-based features, shedding light on the factors that 

influence accurate PD classification. 

 

Class Activation Maps generated from CNNs revealed intriguing insights into the neural activity patterns 

associated with PD. The consistent activation of the left substantia nigra pars compacta (SNc) across most 

patients suggests a potential biomarker for the disease. While the difference between left and right activations 

was statistically significant in PD patients (p-value = 0.09), a similar trend was observed in healthy control 

subjects (p-value = 0.35). This intriguing finding warrants further investigation and could potentially aid in early 

PD diagnosis. The classification model's strong performance during cross-validation and testing, with accuracy 

rates of 81.8% and 85.7%, respectively, underscores its robustness and potential clinical utility. The ROC curves 

in Figure 6 provide a visual representation of the classifier's discrimination ability, highlighting its effectiveness 

in both validation and real-world testing scenarios. In conclusion, this study demonstrates the promise of CNN-

DL-based approaches in PD diagnosis, offering high accuracy and valuable insights into disease-related neural 

activity patterns. These results may improve the early detection of Parkinson's disease (PD), resulting in earlier 

therapies and better patient outcomes. Subsequent studies could examine the application of these artificial 

intelligence models in clinical settings and delve more into the molecular principles underlying left SNc 

activation in Parkinson's disease. 

 

Figure 4: The Class Activation Maps of PD patients indicate significant activity in the SN region during 

the classification of PD individuals from controls. In the case of the third subject, both the left and right 

SNcs exhibit activation, whereas the first two subjects only activate the left SNc 
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Figure 5: Boxplot of SCNN 

 

 
Figure 6: (a) ROC curves for the PD-APS classifier, including both cross-validation and testing data. (b) 

Example heatmaps for a single APS subject and a single PD subject 

 

Table 2: Comparison of the proposed vs existing models 

Description 
Contrast 

ratios-ML 

Radiomics-

ML 
CNN SCNN 

Cross Validation 

Accuracy 52.9 81.9 83.8 82 

Specificity 0.7 0.8 0.8 0.51 

ROC 0.49 0.80 0.96 0.72 

Sensitivity 0.27 0.75 0.88 0.97 

Testing 

Accuracy 57 60.1 80.1 85.5 

Specificity 0.6 0.51 0.72 0.50 

ROC 0.50 0.50 0.93 0.92 

Sensitivity 0.54 0.67 0.85 1.1 

 

Conclusion 
In conclusion, this article introduces a tailored Computer-Aided Diagnosis (CAD) system that adeptly classifies 

MRI patches into either Parkinson's disease or healthy patterns through the application of self-adapting 

convolutional neural networks (CNNs). The model's impressive performance results from its capacity to 

autonomously extract and assimilate critical patterns from the training samples provided by the benchmark 

Parkinson's Progression Markers Initiative (PPMI) dataset. Notably, our findings demonstrate the model's ability 

to discern precise Parkinson's disease characteristics independently. Nevertheless, it is essential to acknowledge 

the challenges posed by overfitting when dealing with relatively small datasets. Fortunately, the thoughtful 
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integration of a dropout layer within the model effectively mitigates this issue. Our research underscores the 

superiority of CNNs over radiomics in terms of accuracy, underscoring their potential for enhanced diagnostic 

capabilities. The consistent disparities in activation maps between PDs and both healthy controls (HCs) and 

atypical parkinsonian syndromes (APS) corroborate the distinct neuro-melanin contrast within the substantia 

nigra pars compacta (SNc) as a discernible feature facilitating the prediction of underlying PD pathology. 

 

Looking ahead, future research can explore the refinement and extension of CNN-based diagnostic models for 

Parkinson's disease. This could involve the integration of additional imaging modalities, such as functional MRI 

or advanced neuroimaging techniques, to further enhance accuracy and early detection capabilities. Moreover, 

the investigation of larger and more diverse datasets may provide deeper insights into the subtle nuances of PD 

pathology. Additionally, efforts to translate these machine learning models into clinical practice could pave the 

way for more accessible and efficient PD diagnosis. Finally, ongoing research should continue to explore novel 

biomarkers and innovative approaches to further unravel the complexities of PD, ultimately leading to improved 

patient care and therapeutic interventions. 

 

References 
1. Asokan, R., & Preethi, P. (2021). Deep learning with conceptual view in meta data for content 

categorization. In Deep Learning Applications and Intelligent Decision Making in Engineering (pp. 

176-191). IGI Global. 

2. Preethi, P., & Asokan, R. (2020, December). Neural network oriented roni prediction for embedding 

process with hex code encryption in dicom images. In Proceedings of the 2nd International Conference 

on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, 

India (pp. 18-19). 

3. Kulurkar, P., kumar Dixit, C., Bharathi, V. C., Monikavishnuvarthini, A., Dhakne, A., & Preethi, P. 

(2023). AI based elderly fall prediction system using wearable sensors: A smart home-care technology 

with IOT. Measurement: Sensors, 25, 100614. 

4. El Maachi, I.; Bilodeau, G.A.; Bouachir, W. Deep 1D-Convnet for accurate Parkinson disease detection 

and severity prediction from gait. Expert Syst. Appl. 2020, 143, 113075.  

5. Tuncer, T.; Dogan, S.; Acharya, U.R. Automated detection of Parkinson’s disease using minimum 

average maximum tree and singular value decomposition method with vowels. Biocybern. Biomed. 

Eng. 2020, 40, 211–220.  

6. Shinde, S.; Prasad, S.; Saboo, Y.; Kaushick, R.; Saini, J.; Pal, P.K.; Ingalhalikar, M. Predictive markers 

for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI. Neuroimage: Clin. 

2019, 22, 101748.  

7. Amoroso, N.; La Rocca, M.; Monaco, A.; Bellotti, R.; Tangaro, S. Complex networks reveal early MRI 

markers of Parkinson’s disease. Med. Image Anal. 2018, 48, 12–24.  

8. Olanrewaju, R.F.; Sahari, N.S.; Musa, A.A.; Hakiem, N. Application of neural networks in early 

detection and diagnosis of Parkinson’s disease. In Proceedings of the 2014 International Conference on 

Cyber and IT Service Management (CITSM), Washington, DC, USA, 27 June–2 July 2014; pp. 78–82. 

9. Ghanad, N.K.; Ahmadi, S. Combination of PSO algorithm and naive Bayesian classification for 

Parkinson disease diagnosis. Adv. Comput. Sci. Int. J. 2015, 4, 119–125. 

10. Prashanth, R.; Roy, S.D.; Mandal, P.K.; Ghosh, S. High-accuracy detection of early parkinson’s disease 

through multimodal features and machine learning. Int. J. Med. Inform. 2016, 90, 13–21.  

 

https://einj.net/index.php/INJ/article/view/528

