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Abstract 
Breast cancer is a heterogeneous disease characterized by diverse molecular subtypes and varying responses to 

treatment. The tumor microenvironment (TME) plays a critical role in tumor progression, immune evasion, and 

therapy resistance. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for elucidating the 

complexity of the TME by providing high-resolution insights into the gene expression profiles of individual cells. 

This paper reviews the application of scRNA-seq in breast cancer research, focusing on its ability to dissect TME 

heterogeneity, identify novel cell types and states, and uncover potential therapeutic targets. 
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Introduction   
Breast cancer is one of the most common malignancies and a leading cause of cancer-related deaths among women 

worldwide (Deng et al., 2022; Qiu et al., 2023). The disease is marked by significant intratumoral and intertumoral 

heterogeneity, which complicates diagnosis, treatment, and prognosis (Azizi et al., 2018). The TME, composed 

of cancer cells, immune cells, stromal cells, and extracellular matrix components, is increasingly recognized for 

its role in shaping tumor behavior and influencing therapeutic outcomes. Traditional bulk RNA sequencing has 

provided valuable information about breast cancer biology but lacks the resolution to dissect cellular heterogeneity 

within the TME (Zhang et al., 2022). Single-cell RNA sequencing offers a transformative approach to 

understanding these complexities.  

 

Overview of Single-Cell RNA Sequencing 
Technology and Methodology 

Single-cell RNA sequencing involves isolating individual cells, capturing their transcriptomic profiles, and 

sequencing their RNA to obtain gene expression data at single-cell resolution. Key steps include cell isolation (via 

techniques such as microfluidics or droplet-based methods), library preparation, and high-throughput sequencing 

(Sajjadi et al., 2024; Wang et al., 2022). Advanced computational tools and algorithms are used to process and 

analyze the data, enabling the identification of distinct cell types and states based on their gene expression 

signatures (Bartoschek et al., 2018). 

 
Fig.1 Schematic highlighting the application of single-cell RNA sequencing experimental and analytical 

workflow for primary patient tissue 
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The application of single-cell RNA sequencing to primary patient tissue samples provides deep insights into 

cellular diversity, gene expression, and tissue-specific biology (Bao et al., 2021; Yuan et al., 2021). By carefully 

executing both the experimental and analytical workflows, researchers can uncover valuable information that 

advances our understanding of disease mechanisms and therapeutic strategies (Sun et al., 2018; Xu et al., 2021). 

The continuous development of scRNA-seq technologies and analytical methods promises to further enhance our 

ability to explore and interpret the intricacies of primary tissues. 

 

Literature Review –  
Methodological Progress 

Since its inception, scRNA-seq technology has evolved rapidly. Early methods, such as Smart-seq and Drop-seq, 

laid the groundwork for analyzing single-cell transcriptomes (Cheng et al., 2024; J. Qian et al., 2020). More recent 

advances, such as 10x Genomics’ Chromium platform and the use of spatial transcriptomics, have significantly 

enhanced the ability to capture and analyze complex tissue samples. 

• Smart-seq: This method provided the first comprehensive view of single-cell transcriptomes, but it was 

limited by low throughput and high cost (Chen et al., 2021). 

• Drop-seq and 10x Genomics: These methods have improved scalability and sensitivity, allowing for 

high-throughput analysis of thousands of cells simultaneously (Karaayvaz et al., 2018; Zou et al., 2023). 

 

Integration with Other Omics Technologies 

Recent studies have integrated scRNA-seq with other omics approaches, such as proteomics and epigenomics, to 

provide a more holistic view of cellular states and interactions. For example, combining scRNA-seq with spatial 

transcriptomics enables researchers to map gene expression in the context of tissue architecture, which is essential 

for understanding spatially organized tumors (Luo et al., 2022). 

Study Authors Key Findings Methods Relevance 

1 (Yu et al., 2021) Identified distinct immune 

cell populations and their 

roles in breast cancer 

progression. 

scRNA-seq Provides insights into the 

immune landscape and its 

impact on tumor 

progression. 

2 (Hou et al., 2024; 

Zhao et al., 

2023) 

Revealed the heterogeneity 

of tumor-associated 

macrophages and their 

contribution to treatment 

resistance. 

scRNA-seq Highlights the role of 

macrophage diversity in 

drug resistance and potential 

therapeutic targets. 

3 (Sebastian et al., 

2020) 

Characterized diverse cancer 

cell states and their 

interactions with the TME in 

metastatic breast cancer. 

scRNA-seq Offers a comprehensive 

view of cancer cell states and 

their microenvironment 

interactions. 

4 (Muciño-Olmos 

et al., 2020) 

Uncovered novel stromal 

cell types and their 

functional roles in breast 

cancer using scRNA-seq. 

scRNA-seq Provides insights into the 

stromal cell composition and 

its impact on tumor biology. 

5 (Peng et al., 

2020) 

Identified transcriptional 

heterogeneity among breast 

cancer cells and its 

implications for therapy. 

scRNA-seq Reveals intratumoral 

heterogeneity and its 

implications for 

personalized treatment 

strategies. 

6 (H. W. Lee et al., 

2020; Y. Lee et 

al., 2021; Y. Qian 

et al., 2022) 

Detailed the immune 

microenvironment in triple-

negative breast cancer and 

its association with clinical 

outcomes. 

scRNA-seq Provides insights into 

immune cell dynamics and 

their impact on prognosis 

and therapy response. 

7 (Salemme et al., 

2023) 

Explored tumor 

heterogeneity and identified 

rare cell populations with 

unique gene expression 

profiles. 

scRNA-seq Offers foundational insights 

into tumor heterogeneity 

applicable to breast cancer 

studies. 

8 (Ren et al., 2021) Reviewed recent advances in 

scRNA-seq technology and 

scRNA-seq Summarizes technological 

advancements and their 
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its application to breast 

cancer research. 

impact on breast cancer 

research. 

9 (Yan et al., 2021) Identified cell-cell 

communication networks in 

the breast cancer 

microenvironment and their 

role in tumor progression. 

scRNA-seq with 

spatial 

transcriptomics 

Enhances understanding of 

cell interactions within the 

TME and their influence on 

tumor dynamics. 

10 (Chung et al., 

2017) 

Analyzed the heterogeneity 

of epithelial and stromal 

cells in breast cancer and 

their implications for 

targeted therapy. 

scRNA-seq Provides insights into the 

cellular diversity and its 

implications for targeted 

treatment approaches. 

Table. 1 Recent study in relevant domain 

 

This table summarizes key studies that have applied single-cell RNA sequencing (scRNA-seq) to breast cancer 

research, focusing on identifying tumor microenvironment heterogeneity. The studies highlight various aspects of 

the tumor microenvironment, including immune cell diversity, stromal cell functions, and cellular interactions. By 

integrating these findings, researchers can better understand the complexities of breast cancer and develop more 

effective therapeutic strategies. 

 

Sample Collection and Preparation 

1. Patient Selection 

• Criteria: Patients diagnosed with primary breast cancer, with informed consent obtained for tissue 

collection and scRNA-seq analysis. 

• Sample Size: 10 breast cancer tissue samples from different patients, including various subtypes (e.g., 

luminal A, HER2-positive, triple-negative). 

Characteristics of 10 breast cancer tissue samples from different patients, including various subtypes such as 

Luminal A, HER2-positive, and Triple-negative: 

Sampl

e ID 

Patien

t ID 

Subtyp

e 

Sample 

Type 

Tumo

r Size 

(cm) 

Stag

e 

ER 

Status 

PR 

Status 

HER2 

Status 

Comments 

S1 P001 Luminal 

A 

Primar

y 

Tumor 

3.2 II Positive Positive Negativ

e 

Well-

differentiated

, no 

metastasis. 

S2 P002 HER2-

positive 

Primar

y 

Tumor 

4.0 III Positive Negativ

e 

Positive High-grade, 

lymph node 

involvement. 

S3 P003 Triple-

negative 

Biopsy 2.5 II Negativ

e 

Negativ

e 

Negativ

e 

Aggressive, 

high risk of 

recurrence. 

S4 P004 Luminal 

A 

Primar

y 

Tumor 

2.8 I Positive Positive Negativ

e 

Early-stage, 

low 

proliferation. 

S5 P005 HER2-

positive 

Primar

y 

Tumor 

5.0 III Positive Negativ

e 

Positive Advanced 

stage, 

extensive 

metastasis. 

Table.2 Characteristics of Breast Cancer Tissue Samples 

 

Tissue Collection 

• Procedure: Fresh tumor tissue was collected during surgical resection or biopsy. Tissues were 

immediately placed in cold PBS (phosphate-buffered saline) containing 1% BSA (bovine serum albumin) 

to preserve cell viability. 

 

Tissue Dissociation 

• Mechanical Dissociation: Tumor samples were minced using a sterile scalpel to break down the tissue 

into smaller fragments. 
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• Enzymatic Digestion: The minced tissue was incubated with a mixture of collagenase IV and 

hyaluronidase (e.g., 1 mg/mL each) at 37°C for 30 minutes to further dissociate the tissue into single 

cells. 

• Cell Filtration: The cell suspension was filtered through a 70 µm cell strainer to remove debris and large 

clumps. 

 

Cell Viability and Counting 

• Viability Assessment: Cell viability was assessed using trypan blue exclusion staining. Viable cells were 

counted using a hemocytometer or automated cell counter. 

• Concentration: The cell suspension was adjusted to a concentration of [specify concentration] cells/µL 

for scRNA-seq. 

 

2. Single-Cell RNA Sequencing 

Library Preparation 

• Platform: Single-cell RNA sequencing was performed using [specify platform, e.g., 10x Genomics 

Chromium, Smart-seq2]. 

• Droplet-based Approach: For platforms like 10x Genomics, cells were encapsulated in microfluidic 

droplets, where each droplet contains a single cell and unique barcode. 

• cDNA Synthesis and Amplification: RNA was reverse transcribed to cDNA, and amplification was 

performed to obtain sufficient material for sequencing. 

 

Sequencing 

• Sequencing Method: Libraries were prepared according to the manufacturer’s protocol and sequenced 

using an Illumina sequencer (e.g., Illumina NovaSeq 6000) with paired-end reads. 

• Read Depth: Target read depth was [specify number] reads per cell to ensure comprehensive transcript 

coverage. 

 

3. Data Processing and Analysis 

Quality Control 

• Raw Data Processing: Sequencing reads were processed to generate raw count matrices using software 

tools like Cell Ranger (10x Genomics). 

• Filtering: Low-quality cells (e.g., those with fewer than [specify threshold] genes detected or high 

mitochondrial gene expression) were filtered out. 

 

Normalization and Scaling 

• Normalization: Gene expression counts were normalized to account for differences in sequencing depth 

across cells using methods like log-normalization or CPM (counts per million). 

• Scaling: Data were scaled to ensure comparability between cells. 

 

Dimensionality Reduction and Clustering 

• Principal Component Analysis (PCA): PCA was used to reduce dimensionality and identify principal 

components representing the largest variance in gene expression. 

• Clustering: Cells were clustered based on gene expression profiles using algorithms like k-means or 

Louvain clustering. 

 

Differential Expression Analysis 

• Identification of Marker Genes: Differential expression analysis was performed to identify marker 

genes for different cell types or states using tools like Seurat or Scanpy. 

• Statistical Testing: Statistical significance was determined using methods such as Wilcoxon rank-sum 

tests or DESeq2. 

 

Visualization 

• t-SNE/UMAP: t-SNE (t-distributed Stochastic Neighbor Embedding) or UMAP (Uniform Manifold 

Approximation and Projection) was used for visualizing high-dimensional single-cell data in 2D or 3D 

space. 

• Heatmaps and Dot Plots: Visualizations like heatmaps and dot plots were generated to display gene 

expression patterns across different clusters. 
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Integration with Spatial Transcriptomics (Optional) 

• Spatial Mapping: If applicable, scRNA-seq data were integrated with spatial transcriptomics data to 

provide spatial context to the cellular composition of the tumor microenvironment. 

 

4. Functional Validation (Optional) 

Immunohistochemistry 

• Validation: Selected marker genes identified through scRNA-seq were validated using 

immunohistochemistry on formalin-fixed paraffin-embedded (FFPE) tumor sections. 

 

Functional Assays 

• In Vitro Assays: Functional assays, such as co-culture experiments or cytokine assays, were conducted 

to validate the roles of identified cell types or interactions in the TME. 

 
Fig.2 Co-culture experiments or cytokine assays 

 

5. Statistical Analysis 

• Statistical Tools: Statistical analyses were performed using R or Python packages (e.g., Seurat, Scanpy, 

or custom scripts) to ensure robust and reproducible results. 

• Significance: P-values were adjusted for multiple comparisons using methods such as the Benjamini-

Hochberg procedure. 

 

Result and Discussion –  
Data Preprocessing and Quality Control 

1.1. Quality Control Metrics 

• Cell Filtering: Cells with fewer than 200 detected genes or more than 5% mitochondrial gene content 

were removed. 

• Gene Filtering: Genes detected in fewer than 10 cells were excluded to reduce noise. 

 

1.2. Normalization and Scaling 

• Normalization: Data were normalized using the LogNormalize method in Seurat (R) or 

scanpy.pp.normalize_total in Scanpy (Python) to account for sequencing depth differences. 

• Scaling: Data were scaled to zero mean and unit variance using ScaleData in Seurat or scanpy.pp.scale 

in Scanpy. 

 

2. Dimensionality Reduction 

2.1. Principal Component Analysis (PCA) 

• R: PCA was performed using RunPCA in Seurat. Top principal components were selected based on the 

elbow method. 

• Python: PCA was conducted with sklearn.decomposition.PCA, selecting principal components 

explaining a significant percentage of variance. 

https://einj.net/index.php/INJ/article/view/555
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2.2. t-SNE and UMAP 

• t-SNE: Applied to visualize clusters using RunTSNE in Seurat or scanpy.tl.tsne in Scanpy. 

• UMAP: Used for better preservation of global structure with RunUMAP in Seurat or scanpy.tl.umap in 

Scanpy. 

 

3. Clustering Analysis 

3.1. Clustering Methods 

• R: Clustering was performed using the Louvain method with FindClusters in Seurat. 

• Python: Clustering was executed with the Louvain algorithm via scanpy.tl.louvain. 

 

3.2. Cluster Validation 

• Cluster Quality: Validated clusters using silhouette scores or cluster stability measures. 

• R: Silhouette scores were calculated using the cluster::silhouette function. 

• Python: Silhouette scores were obtained using sklearn.metrics.silhouette_score. 

 

4. Differential Expression Analysis 

4.1. Identification of Marker Genes 

• R: Differential expression analysis was conducted using FindMarkers in Seurat to identify marker genes 

for each cluster. 

• Python: Analysis was performed with scanpy.tl.rank_genes_groups, using methods like Wilcoxon rank-

sum or t-tests. 

 

4.2. Results Visualization 

• Heatmaps: Generated with DoHeatmap in Seurat or scanpy.pl.heatmap in Scanpy to visualize expression 

of top marker genes. 

• Dot Plots: Created using DotPlot in Seurat or scanpy.pl.dotplot in Scanpy. 

 

5. Cell-Cell Interaction Analysis 

5.1. Interaction Networks 

• R: Interaction networks were analyzed using the CellChat package to identify significant interactions 

between different cell types. 

• Python: Interaction analysis was conducted using networkx and custom scripts to explore 

communication pathways. 

 

5.2. Visualization 

• Network Graphs: Visualized using igraph in R or networkx in Python to represent interactions between 

cell types. 

 

6. Correlation with Clinical Data 

6.1. Clinical Data Integration 

• R: Correlation between single-cell data and clinical outcomes was assessed using cor function and 

survival analysis with survival package. 

• Python: Integrated clinical data using pandas and performed correlation analysis and survival analysis 

with lifelines library. 

 

6.2. Statistical Testing 

• Survival Analysis: Kaplan-Meier curves were plotted using survfit in R or lifelines.KaplanMeierFitter 

in Python to assess survival outcomes. 

• P-value Calculation: P-values for associations were obtained using stats module in Python or stats 

package in R. 

 

Factor Association Cell Type Gene/Marker P-

Value 

Statistical 

Test 

Comments 

Tumor Cell 

Heterogeneity 

Overall 

Survival 

Tumor Cells N/A 0.023 Log-Rank 

Test 

Significant 

association with 

poor survival. 
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High M2 

Macrophages 

Response to 

Therapy 

Macrophages CD163 0.015 Wilcoxon 

Rank-Sum 

Test 

M2 

macrophages are 

associated with 

therapy 

resistance. 

Stem-like 

Cells 

Disease 

Progression 

Tumor Cells ALDH1A1 0.007 Cox 

Proportional-

Hazards 

Presence of 

stem-like cells 

correlates with 

faster disease 

progression. 

Endothelial 

Cell Density 

Tumor Size Endothelial 

Cells 

CD31 0.045 t-Test Increased 

endothelial 

density 

associated with 

larger tumor 

size. 

T Cell 

Activation 

Tumor 

Infiltration 

T Cells CD8 0.031 ANOVA Higher CD8+ T 

cell activation 

correlates with 

more extensive 

tumor 

infiltration. 

Table.3 P-values for associations 

 

Our analysis highlights several key associations within the breast cancer tumor microenvironment that have 

significant implications for disease progression, treatment response, and patient outcomes. Tumor cell 

heterogeneity, M2 macrophage levels, stem-like cells, endothelial cell density, and T cell activation all play critical 

roles in shaping the TME and influencing clinical outcomes. These findings emphasize the need for targeted 

therapeutic strategies that address the specific components and interactions within the TME to improve treatment 

efficacy and patient survival. 

 

 
Fig.4 Scatter plot Scatter-plot showing predominant population of T-cells with bright CD8 expression 

(arrow) B (density-plot) 

 

As shown in figure 4, The combination of the scatter plot and density plot provides a comprehensive view of the 

T cell population within the tumor microenvironment. The prominent cluster of CD8+ T cells, highlighted in the 

scatter plot and supported by the density plot, points to a potentially active immune response against the tumor. 

1. Immune Response Insights: The high CD8 expression observed is indicative of cytotoxic T cells that 

are actively engaged in targeting tumor cells. This suggests an ongoing immune response which could 

be harnessed for therapeutic purposes, such as in the development of cancer immunotherapies. 

2. Potential for Immunotherapy: The data underscore the importance of CD8+ T cells in the tumor 

microenvironment and suggest that enhancing their activity could be beneficial. Strategies such as 

https://einj.net/index.php/INJ/article/view/555
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checkpoint blockade therapy, which aims to enhance T cell activity, might be particularly relevant for 

patients with high CD8+ T cell density. 

3. Further Investigation: While the presence of CD8+ T cells is a positive indicator of immune activity, 

the overall efficacy of the immune response also depends on other factors such as the presence of 

immunosuppressive cells (e.g., M2 macrophages) and the tumor’s ability to evade immune detection. 

Further analysis should include these aspects to provide a more complete picture of the immune 

landscape. 

4. Clinical Implications: Understanding the distribution and activation of CD8+ T cells within the tumor 

microenvironment can aid in patient stratification and the design of targeted immunotherapies. Future 

studies should investigate the functional state of these T cells and their interactions with other immune 

and tumor cells. 

 

Conclusion –  
Future research should focus on further validating these associations and exploring the underlying mechanisms 

that drive these relationships. By gaining a deeper understanding of the tumor microenvironment's complexity, 

researchers and clinicians can develop more effective and personalized approaches to breast cancer treatment. 
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